
IC Application

version 4.1

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 IC User’s Guide 1

1.1 Using the IC Compiler . 1

1.1.1 Introduction . 1

1.1.2 Compiling IDL Files . 1

1.1.3 Compiler Configuration . 2

1.2 C IDL language mapping . 2

1.2.1 Introduction . 2

1.2.2 Mapping Pecularities . 2

1.2.3 Basic OMG IDL Types . 3

1.2.4 Constructed OMG IDL Types . 4

1.2.5 Mapping for Constants . 5

1.2.6 Invocations of Operations . 5

1.2.7 Exceptions . 7

1.2.8 Access to Attributes . 7

1.2.9 Summary of Argument/Result Passing for the C-client 7

1.2.10 Supported Memory Allocation Functions . 9

1.2.11 Special Memory Deallocation Functions . 9

1.2.12 Exception Access Functions . 9

1.2.13 Special Types . 9

1.2.14 A Mapping Example . 10

1.3 Using the Erlang Generic Server Back-end . 11

1.3.1 Introduction . 11

1.3.2 Compiling the Code . 11

1.3.3 Writing the Implementation File . 12

1.3.4 An Example . 12

1.4 Using the Plain Erlang Back-end . 17

1.4.1 Introduction . 17

1.4.2 Compiling the Code . 17

1.4.3 Writing the Implementation File . 17

1.4.4 An Example . 17

iiiIC Application

1.5 Using the C Client Back-end . 19

1.5.1 Introduction . 19

1.5.2 When to Use the C-Client? . 19

1.5.3 What Kind of Code is Produced? . 19

1.5.4 What Does This Code Do when Used? . 20

1.5.5 What Is the Interface of the Functions Produced? 20

1.5.6 Functions Used for Internal Purposes . 21

1.5.7 Which Header Files to Include? . 21

1.5.8 Which Directories/Libraries/Options must Be Included under C-compiling? . . 21

1.5.9 Compiling the Code . 22

1.5.10 An Example . 22

1.6 Using the C Server Back-end . 28

1.6.1 Introduction . 28

1.6.2 What Is the C-server Good For? . 28

1.6.3 What Kind of Code is Produced? . 29

1.6.4 What Does This Code Do when Used ? . 29

1.6.5 What Is the Interface of the Functions Produced? 29

1.6.6 Functions Used for Internal Purposes . 31

1.6.7 Which Header Files to Include ? . 31

1.6.8 Which Directories/Libraries/Options must Be Included under C-compiling? . . 32

1.6.9 Compiling the Code . 32

1.6.10 Implementing the Callback Functions . 32

1.6.11 An Example . 32

1.7 Programming Your Own Composit Function in C . 38

1.7.1 CORBA Environment Setting . 38

1.7.2 The CORBA Compatibility Area of CORBA Environment 39

1.7.3 The External Implementation Area of CORBA Environment 40

1.7.4 The Internal Implementation Area of CORBA Environment 40

1.7.5 Creating and Initiating the CORBA Environment Structure 41

1.7.6 Setting System Exceptions . 42

1.7.7 Guidlines for the Advanced User: . 43

1.8 IDL to Java language Mapping . 43

1.8.1 Introduction . 43

1.8.2 Specialities in the Mapping . 43

1.8.3 Basic OMG IDL Types . 43

1.8.4 Constructed OMG IDL Types . 44

1.8.5 Mapping for Constants . 44

1.8.6 Invocations of Operations . 44

1.8.7 Exceptions . 45

1.8.8 Access to Attributes . 45

iv IC Application

1.8.9 Summary of Argument/Result Passing for Java 45

1.8.10 Communication Toolbox . 45

1.8.11 The Package com.ericsson.otp.ic . 46

1.8.12 The Term Class . 47

1.8.13 Stub File Types . 48

1.8.14 Client Stub Initialization, Methods Exported . 48

1.8.15 Server Skeleton Initialization, Server Stub Implementation, Methods Exported . 48

1.8.16 A Mapping Example . 49

1.8.17 Running the Compiled Code . 50

1.9 IDL Compiler Release Notes . 50

1.9.1 IC 4.1.2, Release Notes . 50

1.9.2 IC 4.1.1, Release Notes . 51

1.9.3 IC 4.0.7, Release Notes . 52

1.9.4 IC 4.0.6, Release Notes . 52

1.9.5 IC 4.0.5, Release Notes . 52

1.9.6 IC 4.0.4, Release Notes . 53

1.9.7 IC 4.0.3, Release Notes . 53

1.9.8 IC 4.0.2, Release Notes . 54

1.9.9 IC 4.0.1, Release Notes . 54

1.9.10 IC 4.0, Release Notes . 55

1.9.11 IC 3.8.2, Release Notes . 56

1.9.12 IC 3.8.1, Release Notes . 56

1.9.13 IC 3.8, Release Notes . 57

1.9.14 IC 3.7.1, Release Notes . 59

1.9.15 IC 3.7, Release Notes . 59

1.9.16 IC 3.6, Release Notes . 59

1.9.17 IC 3.5, Release Notes . 60

1.9.18 IC 3.4, Release Notes . 60

1.9.19 IC 3.3, Release Notes . 61

1.9.20 IC 3.2.2, Release Notes . 62

1.9.21 IC 3.2.1, Release Notes . 62

1.9.22 IC 3.2, Release Notes . 63

1.9.23 IC 3.1.2, Release Notes . 63

1.9.24 IC 3.1.1, Release Notes . 64

1.9.25 IC 3.1, Release Notes . 65

1.9.26 IC 3.0, Release Notes . 66

1.9.27 IC 2.5.1, Release Notes . 66

1.9.28 IC 2.1, Release Notes . 67

1.9.29 IC 2.0, Release Notes . 68

1.9.30 Previous Release Notes . 70

vIC Application

2 IC Reference Manual 71

2.1 CORBA Environment alloc . 72

2.2 ic . 75

List of Tables 81

vi IC Application

Chapter 1

IC User’s Guide

The IC application is an Erlang implementation of an IDL compiler.

1.1 Using the IC Compiler

1.1.1 Introduction

The IC application is an Erlang implementation of an IDL compiler. Several back-ends are supported.
The IDL compiler generates server behaviors and client stubs according to the IDL-to-Erlang mapping.
Interface inheritance is supported. The compiler also performs a limited subset of the IDL semantic
checks.

Six back-ends are currently supported:

� IDL to Erlang CORBA

� IDL to (plain) Erlang

� IDL to generic Erlang Server

� IDL to generic Erlang Server with C clients

� IDL to C server switch with generic Erlang Server functionality

� IDL to Java mapping, where Java client stubs and server skeletons are generated

While the first back-end (IDL to Erlang CORBA) is intended for pure CORBA functionality, the rest
are specially designed to allow portable and efficient links between different languages and virtual
machines.

1.1.2 Compiling IDL Files

The compiler is used by calling ic:gen/1 or ic:gen/2 functions in an Erlang shell:

� ic:gen/1 is used to compile files with only default settings.

� ic:gen/2 is used to compile files with an additional option list.

Example compiling a file example.idl:

� This will generate code for the default back-end.

1IC Application

Chapter 1: IC User’s Guide

1> ic:gen(example).
Erlang IDL compiler version 2.5.1
ok
2>

� This will generate code for the generic Erlang server.

1> ic:gen(example,[{be,erl_genserv}]).
Erlang IDL compiler version 2.5.1
ok
2>

1.1.3 Compiler Configuration

There are a number of compiler options available to the user, which can be configured by either:

� Using a configuration file, or

� By using command line options on ic:gen/2.

Please read the manual page for information about valid options and use of the configuration file.

1.2 C IDL language mapping

1.2.1 Introduction

This chapter describes the mapping of OMG IDL constructs to the C programming language for the
generation of native C - Erlang communication.

This language mapping defines the following:

� All OMG IDL basic types

� All OMG IDL constructed types

� References to constants defined in OMG IDL

� Invocations of operations, including passing of parameters and receiving of result

� Access to attributes

1.2.2 Mapping Pecularities

Names Reserved by the Compiler

The IDL compiler reserves all identifiers starting with OE and oe for internal use.

2 IC Application

1.2: C IDL language mapping

Scoped Names

The C programmer must always use the global name for a type, constant or operation. The C global
name corresponding to an OMG IDL global name is derived by converting occurrences of “::” to
underscore, and eliminating the leading “::”. So, for example, an operation op1 defined in interface I1
which is defined in module M1 would be written as M1::I1::op1 in IDL and as M1 I1 op1 in C.

Warning:
If underscores are used in IDL names it can lead to ambiguities due to the name mapping described
above, therefore it is advisable to avoid the use of underscores in identifiers.

Files

Two files will be generated for each scope. One set of files will be generated for each module and each
interface scope. An extra set is generated for those definitions at top level scope. One of the files is a
header file(.h), and the other file is a C source code file (.c). In addition to these files a number of C
source files will be generated for type encodings, they are named according to the following template:
oe code <type>.c.

For example:

// IDL, in the file "spec.idl"
module m1 {

typedef sequence<long> lseq;

interface i1 {
...

};
...

};

Will produce the files oe spec.h and oe spec.c for the top scope level. Then the files m1.h and m1.c
for the module m1 and files m1 i1.h and m1 i1.c for the interface i1. The typedef will produce
oe code m1 lseq.c.

The header file contains type definitions for all struct types and sequences and constants in the IDL
file. The c file contains all operation stubs if the the scope is an interface.

In addition to the scope-related files a C source file will be generated for encoding operations of all
struct and sequence types.

1.2.3 Basic OMG IDL Types

The mapping of basic types is flexible to allow type adjustment. This can be used when porting to
machines with different architectures.

OMG IDL type C type Implementation Adjustable

float CORBA float float yes

continued ...

3IC Application

Chapter 1: IC User’s Guide

... continued

double CORBA double double yes

short CORBA short short yes

unsigned short CORBA unsigned short unsigned short yes

long CORBA long long yes

long long CORBA long long long yes

unsigned long CORBA unsigned long unsigned long yes

unsigned long long CORBA unsigned long long unsigned long yes

char CORBA char char yes

wchar CORBA wchar unsigned long yes

boolean CORBA boolean unsigned char yes

octet CORBA octet char yes

any Not supported

long double Not supported

Object Not supported

void void void no

Table 1.1: OMG IDL Basic Types

1.2.4 Constructed OMG IDL Types

Constructed types all have native mappings as shown in the list below.

Mapping for String

OMG IDL strings are mapped to C CORBA char*.

Mapping for Wstring

OMG IDL wstrings are mapped to C CORBA wchar*.

Mapping for Struct

An OMG IDL structure is mapped directly onto a C struct.

Mapping for Union

An OMG IDL union is mapped directly onto a C discriminated union.

Mapping for Enum

An OMG IDL enum is directly mapped onto a C enum.

4 IC Application

1.2: C IDL language mapping

Mapping for Sequence

OMG IDL sequences are mapped to a C struct that represents the sequence.

Consider the following IDL declaration:

typedef sequence<long> lseq;

Which in C is represented as:

typedef struct {
CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
CORBA_long* _buffer;

} lseq;

Mapping for Array

OMG IDL arrays are mapped directly to C arrays.

1.2.5 Mapping for Constants

Constants are mapped to C #define.

For example:

// IDL
module M1 {

const long c1 = 99;
};

Would result in the following define:

#define M1_c1 99

1.2.6 Invocations of Operations

Operation invocation is achieved through a function call. The function calls have two default
parameters, the interface object and the environment parameter. The result of the function is returned the
usual way, while in and out parameters lie between the two default parameters in the same order as
they appear in the IDL file.

Default parameters:

� < interface object > oe obj - defined as CORBA Object, always located as the first parameter of
the operation. In the current implementation there is no use for this parameter.

� CORBA Environment* oe env - the environment structure. It is defined under ic.h and has the
following public fields:

– CORBA Exception type major - will indicate whether the invocation terminated
successfully, which will be one of the following:

� CORBA NO EXCEPTION
� CORBA SYSTEM EXCEPTION

5IC Application

Chapter 1: IC User’s Guide

– int fd - a file descriptor returned from erl connect function.

– int inbufsz - size of input buffer.

– char* inbuf - pointer to a buffer used for input.

– int outbufsz - size of output buffer.

– char* outbuf - pointer to a buffer used for output.

– int memchunk - expansion unit size for the output buffer. This is the size of memory chunks
in bytes used for increasing the output in case of buffer expansion. The value of this field
must be allways set to >= 32, should be at least 1024 for performance reasons.

– char regname[256] - a registered name for a process.

– erlang pid* to pid - an Erlang process identifier, is only used if the registered name
parameter is the empty string.

– erlang pid* from pid - your own process id so the answer can be returned

Beside the public fields, other private fields are internally used but are not mentioned here.

Example:

// IDL

interface i1 {
long op1(in long a);
long op2(in string s, out long count);

};

Is mapped to the following C functions

// C

CORBA_long i1_op1(i1 oe_obj, CORBA_long a, CORBA_Environment* oe_env)
{

...
}

CORBA_long i1_op2(i1 oe_obj, CORBA_char* s, CORBA_long *count,
CORBA_Environment* oe_env)
{

...
}

Operation Implementation

There is no standard CORBA mapping for the C-server side, as it is implementation-dependent but
built in a similar way. The current server side mapping is different from the client side mapping in
several ways:

� Argument mappings

� Result values

� Structure

� Usage

� Exception handling

6 IC Application

1.2: C IDL language mapping

1.2.7 Exceptions

While exception mapping is not implemented, the stubs will generate CORBA system exceptions in
case of operation failure. Thus, the only exceptions propagated by the system are built in system
exceptions.

1.2.8 Access to Attributes

Not Supported

1.2.9 Summary of Argument/Result Passing for the C-client

The user-defined parameters can only be in or out parameters, as inout parameters are not supported.

This table summarize the types a client passes as arguments to a stub, and receives as a result.

OMG IDL type In Out Return

short CORBA short CORBA short* CORBA short

long CORBA long CORBA long* CORBA long

long long CORBA long long CORBA long long* CORBA long long

unsigned short CORBA unsigned short CORBA unsigned short* CORBA unsigned short

unsigned long CORBA unsigned long CORBA unsigned long* CORBA unsigned long

unsigned long long CORBA unsigned long longCORBA unsigned long long*CORBA unsigned long long

float CORBA float CORBA float* CORBA float

double CORBA double CORBA double* CORBA double

boolean CORBA boolean CORBA boolean* CORBA boolean

char CORBA char CORBA char* CORBA char

wchar CORBA wchar CORBA wchar* CORBA wchar

octet CORBA octet CORBA octet* CORBA octet

enum CORBA enum CORBA enum* CORBA enum

struct, fixed struct* struct* struct

struct, variable struct* struct** struct*

union, fixed union* union* union

union, variable union* union** union*

string CORBA char* CORBA char** CORBA char*

wstring CORBA wchar* CORBA wchar** CORBA wchar*

sequence sequence* sequence** sequence*

array, fixed array array array slice*

array, variable array array slice** array slice*

Table 1.2: Basic Argument and Result passing

A client is responsible for providing storage of all arguments passed as in arguments.

OMG IDL type Out Return

continued ...

7IC Application

Chapter 1: IC User’s Guide

... continued

short 1 1

long 1 1

long long 1 1

unsigned short 1 1

unsigned long 1 1

unsigned long long 1 1

float 1 1

double 1 1

boolean 1 1

char 1 1

wchar 1 1

octet 1 1

enum 1 1

struct, fixed 1 1

struct, variable 2 2

string 2 2

wstring 2 2

sequence 2 2

array, fixed 1 3

array, variable 3 3

Table 1.3: Client argument storage responsibility

Case Description

1 Caller allocates all necessary storage, except that which may be encapsulated and managed within
the parameter itself.

2 The caller allocates a pointer and passes it by reference to the callee. The callee sets the pointer to
point to a valid instance of the parameter’s type. The caller is responsible for releasing the returned
storage. Following completion of a request, the caller is not allowed to modify any values in the
returned storage. To do so the caller must first copy the returned instance into a new instance, then
modify the new instance.

3 The caller allocates a pointer to an array slice which has all the same dimensions of the original
array except the first, and passes it by reference to the callee. The callee sets the pointer to point to
a valid instance of the array. The caller is responsible for releasing the returned storage. Following
completion of a request, the caller is not allowed to modify any values in the returned storage. To
do so the caller must first copy the returned instance into a new instance, then modify the new
instance.

Table 1.4: Argument passing cases

The returned storage in case 2 and 3 is allocated as one block of memory so it is possible to deallocate it
with one call of CORBA free.

8 IC Application

1.2: C IDL language mapping

1.2.10 Supported Memory Allocation Functions

� CORBA Environment can be allocated from the user by calling CORBA Environment alloc().
The interface for this function is
CORBA Environment *CORBA Environment alloc(int inbufsz, int outbufsz); where :

– inbufsz is the desired size of input buffer

– outbufsz is the desired size of output buffer

– return value is a pointer to an allocated and initialized CORBA Environment structure

� Strings can be allocated from the user by calling CORBA string alloc().
The interface for this function is
CORBA char *CORBA string alloc(CORBA unsigned long len);

where :

– len is the length of the string to be allocated.

Thus far, no other type allocation function is supported.

1.2.11 Special Memory Deallocation Functions

� void CORBA free(void *storage)

This function will free storage allocated by the stub.

� void CORBA exception free(CORBA environment *ev)

This function will free storage allocated under exception propagation.

1.2.12 Exception Access Functions

� CORBA char *CORBA exception id(CORBA Environment *ev)

This function will return raised exception identity.

� void *CORBA exception value(CORBA Environment *ev)

This function will return the value of a raised exception.

1.2.13 Special Types

� The erlang binary type has some special features.
While the erlang::binary idl type has the same C-definition as a generated sequence of octets :

module erlang
{

....

// an erlang binary
typedef sequence<octet> binary;

};

it provides a way on sending trasparent data between C and Erlang.
The C-definition (ic.h) for an erlang binary is :

9IC Application

Chapter 1: IC User’s Guide

typedef struct {
CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
CORBA_octet* _buffer;
} erlang_binary; /* ERLANG BINARY */

The differences (between erlang::binary and sequence< octet >) are :

– on the erlang side the user is sending/receiving typical built in erlang binaries, using
term to binary() / binary to term() to create / extract binary structures.

– no encoding/decoding functions are generated

– the underlying protocol is more efficient than usual sequences of octets

The erlang binary IDL type is defined in erlang.idl, while it’s C definition is located in the ic.h
header file, both in the IC-< vsn >/include directory. The user will have to include the file
erlang.idl in order to use the erlang::binary type.

1.2.14 A Mapping Example

This is a small example of a simple stack. There are two operations on the stack, push and pop. The
example shows all generated files as well as conceptual usage of the stack.

// The source IDL file: stack.idl

struct s {
long l;
string s;

};

interface stack {
void push(in s val);
s pop();

};

When this file is compiled it produces four files, two for the top scope and two for the stack interface
scope. The important parts of the generated C code for the stack API is shown below.

stack.c

void push(stack oe_obj, s val, CORBA_Environment* oe_env) {
...

}

s* pop(stack oe_obj, CORBA_Environment* oe_env) {
...

}

oe stack.h

10 IC Application

1.3: Using the Erlang Generic Server Back-end

#ifndef OE_STACK_H
#define OE_STACK_H

/*--
* Struct definition: s
*/
typedef struct {

long l;
char *s;

} s;

#endif

stack.h just contains an include statement of oe stack.h.

oe code s.c

int oe_sizecalc_s(CORBA_Environment
oe_env, int oe_size_count_index, int* oe_size) {

...
}

int oe_encode_s(CORBA_Environment *oe_env, s* oe_rec) {
...

}

int oe_decode_s(CORBA_Environment *oe_env, char *oe_first,
int* oe_outindex, s *oe_out) {

...
}

The only files that are really important are the .h files and the stack.c file.

1.3 Using the Erlang Generic Server Back-end

1.3.1 Introduction

The mapping of OMG IDL to the Erlang programming language when Erlang generic server is the
back-end of choice is similar to the one used in the chapter ’OMG IDL Mapping’. The only difference
is on the generated code, a client stub and server skeleton to an Erlang gen server.

1.3.2 Compiling the Code

In the Erlang shell type :

ic:gen(<filename>, [fbe, erl genservg]).

11IC Application

Chapter 1: IC User’s Guide

1.3.3 Writing the Implementation File

For each IDL interface <interface name> defined in the IDL file :

� Create the coresponding Erlang file that will hold the Erlang implementation of the IDL
definitions.

� Call the implementation file after the scope of the IDL interface, followed by the suffix impl.

� Export the implementation functions.

For each function defined in the IDL interface :

� Implement an Erlang function that uses as arguments in the same order, as the input arguments
described in the IDL file, and returns the value described in the interface.

� When using the function, follow the mapping described in chapter 2.

1.3.4 An Example

In this example, a file “random.idl” generates code for the plain erlang back-end :

� Main file : “random.idl”

module rmod {

interface random {

double produce();

oneway void init(in long seed1, in long seed2, in long seed3);

};

};

Compile the file :

Erlang BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> ic:gen(random,[{be, erl_genserv}]).
Erlang IDL compiler version 2.5.1
ok
2>

When the file “random.idl” is compiled it produces five files: two for the top scope, two for the
interface scope, and one for the module scope. The header files for top scope and interface are empty
and not shown here. In this case, only the file for the interface rmod random.erl is important :.

� Erlang file for interface : “rmod random.erl”

12 IC Application

1.3: Using the Erlang Generic Server Back-end

-module(rmod_random).

%% Interface functions
-export([produce/1, init/4]).

%% Type identification function
-export([typeID/0]).

%% Used to start server
-export([oe_create/0, oe_create_link/0, oe_create/1]).
-export([oe_create_link/1, oe_create/2, oe_create_link/2]).

-export([start/2, start_link/3]).

%% gen server export stuff
-behaviour(gen_server).
-export([init/1, terminate/2, handle_call/3]).
-export([handle_cast/2, handle_info/2]).

%%--
%%
%% Object interface functions.
%%
%%--

%%%% Operation: produce
%%
%% Returns: RetVal
%%
produce(OE_THIS) ->

gen_server:call(OE_THIS, produce, infinity).

%%%% Operation: init
%%
%% Returns: RetVal
%%
init(OE_THIS, Seed1, Seed2, Seed3) ->

gen_server:cast(OE_THIS, {init, Seed1, Seed2, Seed3}).

%%--
%%
%% Server implementation.
%%
%%--

13IC Application

Chapter 1: IC User’s Guide

%%--
%%
%% Function for fetching the interface type ID.
%%
%%--

typeID() ->
"IDL:rmod/random:1.0".

%%--
%%
%% Server creation functions.
%%
%%--

oe_create() ->
start([], []).

oe_create_link() ->
start_link([], []).

oe_create(Env) ->
start(Env, []).

oe_create_link(Env) ->
start_link(Env, []).

oe_create(Env, RegName) ->
start(RegName, Env, []).

oe_create_link(Env, RegName) ->
start_link(RegName, Env, []).

%%--
%%
%% Start functions.
%%
%%--

start(Env, Opt) ->
gen_server:start(?MODULE, Env, Opt).

start_link(Env, Opt) ->
gen_server:start_link(?MODULE, Env, Opt).

start(RegName, Env, Opt) ->
gen_server:start(RegName, ?MODULE, Env, Opt).

start_link(RegName, Env, Opt) ->
gen_server:start_link(RegName, ?MODULE, Env, Opt).

14 IC Application

1.3: Using the Erlang Generic Server Back-end

init(Env) ->
%% Call to implementation init

rmod_random_impl:init(Env).

terminate(Reason, State) ->
rmod_random_impl:terminate(Reason, State).

%%%% Operation: produce
%%
%% Returns: RetVal
%%
handle_call(produce, OE_From, OE_State) ->

rmod_random_impl:produce(OE_State);

%%%% Standard Operation: oe_get_interface
%%
handle_call({OE_THIS, oe_get_interface, []}, From, State) ->

{reply, [{"produce",{tk_double,[],[]}},
{"init",{tk_void,[tk_long,tk_long,tk_long],[]}}], State};

%%%% Standard gen_server call handle
%%
handle_call(stop, From, State) ->

{stop, normal, ok, State}.

%%%% Operation: init
%%
%% Returns: RetVal
%%
handle_cast({init, Seed1, Seed2, Seed3}, OE_State) ->

rmod_random_impl:init(OE_State, Seed1, Seed2, Seed3);

%%%% Standard gen_server cast handle
%%
handle_cast(stop, State) ->

{stop, normal, State}.

%%%% Standard gen_server handles
%%
handle_info(X, State) ->

{noreply, State}.

The implementation file should be called rmod random impl.erl and could look like this :

15IC Application

Chapter 1: IC User’s Guide

-module(’rmod_random_impl’).
-export([init/1, terminate/2]).
-export([produce/1,init/4]).

init(Env) ->
{ok, []}.

terminate(From, Reason) ->
ok.

produce(_Random) ->
case catch random:uniform() of

{’EXIT’,_} ->
true;

RUnif ->
{reply,RUnif,[]}

end.

init(_Random,S1,S2,S3) ->
case catch random:seed(S1,S2,S3) of

{’EXIT’,_} ->
true;

_ ->
{noreply,[]}

end.

Compiling the code :

2> make:all().
Recompile: rmod_random
Recompile: oe_random
Recompile: rmod_random_impl
up_to_date

Running the example :

3> {ok,R} = rmod_random:oe_create().
{ok,<0.30.0>
4> rmod_random:init(R,1,2,3).
ok
5> rmod_random:produce(R).
1.97963e-4
6>

16 IC Application

1.4: Using the Plain Erlang Back-end

1.4 Using the Plain Erlang Back-end

1.4.1 Introduction

The mapping of OMG IDL to the Erlang programming language when Plain Erlang is the back-end of
choice is similar to the one used in pure Erlang IDL mapping. The only difference is on the generated
code and the extended use of pragmas for code generation: IDL functions are translated to Erlang
module function calls.

1.4.2 Compiling the Code

In the Erlang shell type :

ic:gen(<filename>, [fbe, erl plaing]).

1.4.3 Writing the Implementation File

For each IDL interface <interface name> defined in the IDL file:

� Create the corresponding Erlang file that will hold the Erlang implementation of the IDL
definitions.

� Call the implementation file after the scope of the IDL interface, followed by the suffix impl.

� Export the implementation functions.

For each function defined in the IDL interface :

� Implement an Erlang function that uses as arguments in the same order, as the input
ch c gen serv map.sgmlarguments described in the IDL file, and returns the value described in the
interface.

� When using the function, follow the mapping described in chapter 2.

1.4.4 An Example

In this example, a file “random.idl” is generates code for the plain erlang back-end :

� Main file : “plain.idl”

module rmod {

interface random {

double produce();

oneway void init(in long seed1, in long seed2, in long seed3);

};

};

Compile the file :

17IC Application

Chapter 1: IC User’s Guide

Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> ic:gen(random,[{be, erl_plain}]).
Erlang IDL compiler version 2.5.1
ok
2>

When the file “random.idl” is compiled it produces five files: two for the top scope, two for the
interface scope, and one for the module scope. The header files for top scope and interface are empty
and not shown here. In this case only the file for the interface rmod random.erl is important :.

� Erlang file for interface : “rmod random.erl”

-module(rmod_random).

%% Interface functions
-export([produce/0, init/3]).

%%--
%% Operation: produce
%%
%% Returns: RetVal
%%
produce() ->

rmod_random_impl:produce().

%%--
%% Operation: init
%%
%% Returns: RetVal
%%
init(Seed1, Seed2, Seed3) ->

rmod_random_impl:init(Seed1, Seed2, Seed3).

The implementation file should be called rmod random impl.erl and could look like this:

-module(’rmod_random_impl’).

-export([produce/0,init/3]).

produce() ->
random:uniform().

init(S1,S2,S3) ->
random:seed(S1,S2,S3).

Compiling the code :

18 IC Application

1.5: Using the C Client Back-end

2> make:all().
Recompile: rmod_random
Recompile: oe_random
Recompile: rmod_random_impl
up_to_date

Running the example :

3> rmod_random:init(1,2,3).
ok
4> rmod_random:produce().
1.97963e-4
5>

1.5 Using the C Client Back-end

1.5.1 Introduction

The mapping of OMG IDL to the C programming language when C Server switch is the back-end of
choice is identical to the one used in C IDL mapping. The only difference is on the generated code, and
that the idl functions are translated to C functions for the C client.

1.5.2 When to Use the C-Client?

A C-client uses the same communication protocol as an Erlang client to genservers, as it is actually a
C-genserver client. Therefore, the C-client can be used for:

� Calling functions served by C-servers generated by the C-server back-end.

� Calling functions served by Erlang-genservers generated by the Erlang genserver back-end.

1.5.3 What Kind of Code is Produced?

The code produced is a collection of:

� C source files that contain interface code.
These files are named after the < Scoped Interface Name >s.c convention

� C source files that contain code for:

– type conversion

– memory allocation

– data encoding / decoding into buffers

� C header files that contain function headers and type definitions.

All functions found in the code are exported. The user is free to define his own client if there is a need
for this. The basic client generated is a synchronous client, but an asynchronous client can be
implemented by proper use of exported functions.

19IC Application

Chapter 1: IC User’s Guide

1.5.4 What Does This Code Do when Used?

The main functionality of a C client is to:

� Encode call request messages.

� Write messages to a specified file descriptor.

� Read from a specified file descriptor.

� Decode the reply messages.

� Return output values

1.5.5 What Is the Interface of the Functions Produced?

The C source defines the following functions:

� One client function for each IDL function.

� One specific message encoder function for each IDL function.

� One specific call function for each function defined in the interface.

� One generic reply message decoder function for each IDL interface.

� One specific return value decoder function for each IDL function.

The interface for the client function is:

< Return Value > < Scoped Function Name > (< Interface Object > oe obj, < Parameters >
CORBA Environment *oe env);

Where:

� < Return Value > is the return value is the value to be returned as defined by the IDL
specification for the operation.

� < Interface Object > oe obj is the client interface object.

� < Parameters > are the parameters to the operation in the same order as defined by the IDL
specdication for the operation.

� CORBA Environment *oe env is a pointer to the current client environment as described in
section 3.6.

The interface for the message encoding functions is:

int < Scoped Function Name > client enc(< Interface Object > oe obj, < Input Parameters >
CORBA Environment *oe env);

Where:

� < Interface Object > oe obj is the client interface object.

� < Input Parameters > are all the inputparameters to the operation in the same order as
defined by the IDL specification for the operation.

� CORBA Environment *oe env is a pointer to the current client environment as described in
section 3.6.

� the return value for the client is an int which is positive or zero when the call is succeed, negative
otherwise

20 IC Application

1.5: Using the C Client Back-end

The interface for the specific result value decoder is:

int < Scoped Function Name > client dec(< Interface Object > oe obj, < Return/Out Values >
CORBA Environment *oe env);

Where:

� < Interface Object > oe obj is the client interface object.

� < Return/Out Values > are return values in order similar to the IDL defined function’s.

� CORBA Environment *oe env is a pointer to the current client environment as described in
section 3.6.

� the return value for the client is an int which is positive or zero when the call is succeed, negative
otherwise

The interface for the generic decoding function is:

int < Scoped Interface Name > receive info(< Interface Object > oe obj, CORBA Environment
*oe env);

Where:

� < Interface Object > oe obj is the client interface object.

� CORBA Environment *oe env is a pointer to the current client environment as described in
section 3.6.

� the return value for the client is an int which is positive or zero when the call is succeed, negative
otherwise

1.5.6 Functions Used for Internal Purposes

Depending on the data defined and used in the IDL code, C-source files may be generated that hold
functions used internally. This is the case when other types than the elementary IDL types are used by
the IDL file definitions. All these files must be compiled and linked to the other code.

1.5.7 Which Header Files to Include?

The only header files that must be included are :

� the interface files, the files named < Scoped Interface Name >.h.

1.5.8 Which Directories/Libraries/Options must Be Included under
C-compiling?

Under compilation you will have to include :

� the directory $OTPROOT/ usr/ include

Under linking you will have to link with :

� the libraries under $OTPROOT/ usr/ lib

� -lerl interface -lei -lnsl -lsocket -lic

21IC Application

Chapter 1: IC User’s Guide

1.5.9 Compiling the Code

In the Erlang shell type:

ic:gen(< filename >, [fbe, c clientg]).

1.5.10 An Example

In this example, a file “random.idl” is generates code for the plain erlang back-end:

� Main file: “random.idl”

module rmod {

interface random {

double produce();

oneway void init(in long seed1, in long seed2, in long seed3);

};

};

Compile the file:

Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> ic:gen(random,[{be, c_client}]).
Erlang IDL compiler version 3.2
ok
2>

When the file “random.idl” is compiled it produces five files, two for the top scope, two for the interface
scope, and one for the module scope. The header files for top scope and interface are empty and not
shown here. In this case only the file for the interface rmod random.erl is important:.

� C file for interface: “rmod random.c”

#include <stdlib.h>
#include <string.h>
#include "ic.h"
#include "erl_interface.h"
#include "ei.h"
#include "rmod_random.h"

/*
* Object interface function "rmod_random_produce"
*/

CORBA_double rmod_random_produce(rmod_random oe_obj,
CORBA_Environment *oe_env) {

22 IC Application

1.5: Using the C Client Back-end

CORBA_double oe_result;
int oe_msgType = 0;
erlang_msg oe_msg;

/* Initiating the message reference */
strcpy(oe_env->_unique.node,erl_thisnodename());
oe_env->_unique.creation = erl_thiscreation();
oe_env->_unique.id = 0;

/* Initiating exception indicator */
oe_env->_major = CORBA_NO_EXCEPTION;

/* Creating call message */
if (rmod_random_produce__client_enc(oe_obj, oe_env) < 0) {
if (oe_env->_major == CORBA_NO_EXCEPTION)
CORBA_exc_set(oe_env,

CORBA_SYSTEM_EXCEPTION,
MARSHAL,
"Cannot encode message");

return oe_result;
}

/* Sending call request */
if (strlen(oe_env->_regname) == 0) {
if (ei_send_encoded(oe_env->_fd,

oe_env->_to_pid,
oe_env->_outbuf,
oe_env->_iout) < 0) {

CORBA_exc_set(oe_env,
CORBA_SYSTEM_EXCEPTION,
NO_RESPONSE,

"Cannot connect to server");
return oe_result;

}
}
else if (ei_send_reg_encoded(oe_env->_fd,

oe_env->_from_pid,
oe_env->_regname,
oe_env->_outbuf,
oe_env->_iout) < 0) {

CORBA_exc_set(oe_env,
CORBA_SYSTEM_EXCEPTION,
NO_RESPONSE,
"Cannot connect to server");

return oe_result;
}

/* Receiving reply message */
do {
if ((oe_msgType =

ei_receive_encoded(oe_env->_fd,
&oe_env->_inbuf,

23IC Application

Chapter 1: IC User’s Guide

&oe_env->_inbufsz,
&oe_msg,
&oe_env->_iin)) < 0) {

CORBA_exc_set(oe_env,
CORBA_SYSTEM_EXCEPTION,
MARSHAL,
"Cannot decode message");

return oe_result;
}

} while (oe_msgType != ERL_SEND && oe_msgType != ERL_REG_SEND);

/* Extracting message header */
if (rmod_random__receive_info(oe_obj, oe_env) < 0) {
CORBA_exc_set(oe_env,

CORBA_SYSTEM_EXCEPTION,
MARSHAL,
"Bad message");

return oe_result;
}

/* Extracting return value(s) */
if (rmod_random_produce__client_dec(oe_obj,

&oe_result,
oe_env) < 0) {

CORBA_exc_set(oe_env,
CORBA_SYSTEM_EXCEPTION,
DATA_CONVERSION,
"Bad return/out value(s)");

}

return oe_result;
}

/*
* Encodes the function call for "rmod_random_produce"
*/

int rmod_random_produce__client_enc(rmod_random oe_obj,
CORBA_Environment *oe_env) {

int oe_error_code = 0;
oe_env->_iout = 0;

oe_ei_encode_version(oe_env);
oe_ei_encode_tuple_header(oe_env, 3);
oe_ei_encode_atom(oe_env, "$gen_call");
oe_ei_encode_tuple_header(oe_env, 2);

if ((oe_error_code =
oe_ei_encode_pid(oe_env,oe_env->_from_pid)) < 0)

return oe_error_code;

24 IC Application

1.5: Using the C Client Back-end

if ((oe_error_code =
oe_ei_encode_ref(oe_env,&oe_env->_unique)) < 0)

return oe_error_code;

oe_ei_encode_atom(oe_env, "produce");

return 0;
}

/*
* Decodes the return value for "rmod_random_produce"
*/

int rmod_random_produce__client_dec(rmod_random oe_obj,
CORBA_double* oe_result,
CORBA_Environment *oe_env) {

int oe_error_code = 0;

/* Decode result value: CORBA_double* oe_result */
if ((oe_error_code =

ei_decode_double(oe_env->_inbuf,
&oe_env->_iin,
oe_result)) < 0)

return oe_error_code;

return 0;
}

/*
* Object interface function "rmod_random_init"
*/

void rmod_random_init(rmod_random oe_obj,
CORBA_long seed1,
CORBA_long seed2,
CORBA_long seed3,
CORBA_Environment *oe_env) {

/* Initiating exception indicator */
oe_env->_major = CORBA_NO_EXCEPTION;

/* Creating call message */
if (rmod_random_init__client_enc(oe_obj,

seed1,
seed2,
seed3,
oe_env) < 0) {

if (oe_env->_major == CORBA_NO_EXCEPTION)

25IC Application

Chapter 1: IC User’s Guide

CORBA_exc_set(oe_env,
CORBA_SYSTEM_EXCEPTION,
MARSHAL,
"Cannot encode message");

}

/* Sending call request */
if (oe_env->_major == CORBA_NO_EXCEPTION) {
if (strlen(oe_env->_regname) == 0) {
if (ei_send_encoded(oe_env->_fd,

oe_env->_to_pid,
oe_env->_outbuf,
oe_env->_iout) < 0) {

CORBA_exc_set(oe_env,
CORBA_SYSTEM_EXCEPTION,
NO_RESPONSE,
"Cannot connect to server");

}
}
else if (ei_send_reg_encoded(oe_env->_fd,

oe_env->_from_pid,
oe_env->_regname,
oe_env->_outbuf,
oe_env->_iout) < 0) {

CORBA_exc_set(oe_env,
CORBA_SYSTEM_EXCEPTION,
NO_RESPONSE,
"Cannot connect to server");

}
}

}

/*
* Encodes the function call for "rmod_random_init"
*/

int rmod_random_init__client_enc(rmod_random oe_obj,
CORBA_long seed1,
CORBA_long seed2,
CORBA_long seed3,
CORBA_Environment *oe_env) {

int oe_error_code = 0;
oe_env->_iout = 0;

oe_ei_encode_version(oe_env);
oe_ei_encode_tuple_header(oe_env, 2);

oe_ei_encode_atom(oe_env, "$gen_cast");
oe_ei_encode_tuple_header(oe_env, 4);
oe_ei_encode_atom(oe_env, "init");

26 IC Application

1.5: Using the C Client Back-end

/* Encode parameter: CORBA_long seed1 */
if ((oe_error_code = oe_ei_encode_long(oe_env, seed1)) < 0)
return oe_error_code;

/* Encode parameter: CORBA_long seed2 */
if ((oe_error_code = oe_ei_encode_long(oe_env, seed2)) < 0)
return oe_error_code;

/* Encode parameter: CORBA_long seed3 */
if ((oe_error_code = oe_ei_encode_long(oe_env, seed3)) < 0)
return oe_error_code;

return 0;
}

/*
* Generic function, used to return received message information.
* Not used by oneways. Allways generated.
*/

int rmod_random__receive_info(rmod_random oe_obj,
CORBA_Environment *oe_env) {

int oe_error_code = 0;
int oe_rec_version = 0;
erlang_ref oe_unq;
oe_env->_iin = 0;
oe_env->_received = 0;

if ((oe_error_code =
ei_decode_version(oe_env->_inbuf,

&oe_env->_iin,
&oe_rec_version)) < 0)

return oe_error_code;

if ((oe_error_code =
ei_decode_tuple_header(oe_env->_inbuf,

&oe_env->_iin,
&oe_env->_received)) < 0)

return oe_error_code;

if ((oe_error_code =
ei_decode_ref(oe_env->_inbuf,

&oe_env->_iin,
&oe_unq)) < 0)

return oe_error_code;

/* Checking message reference*/
if(strcmp(oe_env->_unique.node,oe_unq.node) != 0)
return -1;

27IC Application

Chapter 1: IC User’s Guide

if(oe_env->_unique.id != oe_unq.id)
return -1;

return 0;

}

Compiling the code:

� Please read the ReadMe file att the ic-3.2/examples/c-client directory
In the same directory you can find all the code for this example

Note:
Due to changes to allow buffer expansion, a new receiving function some changes in
CORBA Environment initialization are applied. The example in the ic-3.2/examples/c-client directory
demonstrates these changes.

Running the example:

� Please check the ReadMe file att the ic-3.2/examples/c-client directory
In the same directory you can find all the code for this example

1.6 Using the C Server Back-end

1.6.1 Introduction

The mapping of OMG IDL to the C programming language when C Server switch is the back-end of
choice is identical to the one use in C IDL mappning. The only difference is on the generated code, and
that the idl functions are translated to C function calls for the C Server.

1.6.2 What Is the C-server Good For?

The C-server uses the same communication protocol as for the Erlang genservers, it is actually a
C-genserver. So the C-server can be used for :

� Serving C-clients generated by the C-client back-end.

� Serving Erlang genserver-clients generated by the Erlang genserver back-end.

28 IC Application

1.6: Using the C Server Back-end

1.6.3 What Kind of Code is Produced?

The code produced is a collection of :

� C source files that contain interface code.
These files are named after the < Scoped Interface Name > s.c convension

� C source files that contain code for :

– type conversion

– memory allocation

– data encoding/decoding into buffers

� C header files that contain function headers and type definitions.

All functions found in the code are exported. The user is free to define his own switches if there is a
need for this.

1.6.4 What Does This Code Do when Used ?

The main functionality of a C server switch is to :

� Decode call requests stored in buffers

� Recognize the function noted in a request

� Call the callback function that implements the request with the parameters followed in the
message

� Collect the output from the callback function (if the function defined is not a cast)

� Encode the output value to an output buffer

� Call the restore function (if defined) that frees memory or/and sets up a server state

1.6.5 What Is the Interface of the Functions Produced?

The C source defines the following functions :

� One server switch for each interface.

� One generic message decoder for each switch.

� One specific call function for each function defined in the interface.

� At most, one specific parameter decoding function for each call function.

� One callback function for each call function.

� At most, one specific return value encoding function for each call function.

The interface for the server switch is :

int < Scoped Interface Name > switch(< Interface Object > oe obj, CORBA Environment *oe env);

Where :

� < Interface Object > oe obj is the client interface object.

� CORBA Environment *oe env is a pointer to the current client environment as described in
section 3.6.

� the return value for the client is an int which is positive or zero when the call is succesful,
negative otherwise

29IC Application

Chapter 1: IC User’s Guide

The interface for the generic message decoder is :

int < Scoped Interface Name > call info((< Interface Object > oe obj, CORBA Environment *oe env
);

Where :

� < Interface Object > oe obj is the client interface object.

� CORBA Environment *oe env is a pointer to the current client environment as described in
section 3.6.

� the return value for the client is an int which is positive or zero when the call is succesful,
negative otherwise

The interface for the specific call function definition is :

int < Scoped Function Name > exec(< Interface Object > oe obj, CORBA Environment *oe env);

Where :

� < Interface Object > oe obj is the client interface object.

� CORBA Environment *oe env is a pointer to the current client environment as described in
section 3.6.

� the return value for the client is an int which is positive or zero when the call is succesful,
negative otherwise

The interface for the specific parameter decoder function is :

int < Scoped Function Name > dec(< Interface Object > oe obj, < Parameters >
CORBA Environment *oe env);

Where :

� < Interface Object > oe obj is the client interface object.

� < Parameters > are pointers to parameters for the function call to be decoded. The order of
apearence is similar to the IDL definition of the function.

� CORBA Environment *oe env is a pointer to the current client environment as described in
section 3.6.

� the return value for is an int which is positive or zero when the call is succeed, negative otherwize

The interface for the specific callback function is :

< Scoped Function Name > rs* < Scoped Function Name > cb(< Interface Object > oe obj, <
Parameters > CORBA Environment *oe env);

Where :

� < Interface Object > oe obj is the client interface object.

� < Parameters > are pointers to in/out-parameters for the function call. The order of apearence
is similar to the IDL definition of the function.

� CORBA Environment *oe env is a pointer to the current client environment as described in
section 3.6.

� the return value for the client is a pointer to the restore function which is NULL when the
restore function is not defined, initiated to point the restore function otherwise

Callback functions are implementation dependent and in order to make things work, the following rule
must be followed when passing arguments to callback functions :

30 IC Application

1.6: Using the C Server Back-end

� in parameters of variable storage type are passed as is.

� out parameters of variable storage type are passed by a pointer to their value.

� in / out parameters of fixed storage type are passed by a pointer to their value.

� return values are always passed by a pointer to their value.

The interface for the specific message encoder function is :

int < Scoped Function Name > enc(< Interface Object > oe obj, < Parameters >
CORBA Environment *oe env);

Where :

� < Interface Object > oe obj is the client interface object.

� < Parameters > are pointers to parameters for the return message to be encoded. The order of
appearence is similar to the IDL definition of the function.

� CORBA Environment *oe env is a pointer to the current client environment as described in
section 3.6.

� the return value for the client is an int which is positive or zero when the call is successful,
negative otherwize

The encoder function is generated only for usual call IDL-functions (not oneways)

The interface for the specific restore function is :

void < Scoped Function Name > rs(< Interface Object > oe obj, < Parameters >
CORBA Environment *oe env);

Where :

� < Interface Object > oe obj is the client interface object.

� < pointers to result values / parameters > are pointers to in/out-parameters for the
function call. The order of appearence is similar to the IDL definition of the function.

� CORBA Environment *oe env is a pointer to the current client environment as described in
section 3.6.

The restore function type definition is recorded on the interface header file. It is unique for each IDL
defined interface function

1.6.6 Functions Used for Internal Purposes

Depending on the data defined and used in the IDL code, C-source files may be generated that hold
functions used internally. This is the case when other types than the elementary IDL types are used by
the IDL file definitions. All these files must be compiled and linked to the other code.

1.6.7 Which Header Files to Include ?

The only header files that must be included are the interface files, the files named < Scoped
Interface Name > s.h

31IC Application

Chapter 1: IC User’s Guide

1.6.8 Which Directories/Libraries/Options must Be Included under
C-compiling?

Under compilation you will have to include :

� the directory $OTPROOT/ usr/ include

Under linking you will have to link with :

� the libraries under $OTPROOT/ usr/ lib

� -lerl interface -lei -lnsl -lsocket -lic

1.6.9 Compiling the Code

In the Erlang shell type :

ic:gen(<filename>, [fbe, c serverg]).

1.6.10 Implementing the Callback Functions

For each IDL interface <interface name> defined in the IDL file :

� Create the coresponding C file that will hold the C callback functions for the IDL defined
functions.

� The implementation file does not need a special naming.

For each function defined in the IDL interface :

� Implement a C function that uses as arguments in the same order, as the input arguments
described in the IDL file and returns the value described in the interface.

� When using the function, follow the mapping described in chapter 3.

1.6.11 An Example

In this example, a file “random.idl” generates code for the plain erlang back-end :

� Main file : “random.idl”

module rmod {

interface random {

double produce();

oneway void init(in long seed1, in long seed2, in long seed3);

};

};

Compile the file :

32 IC Application

1.6: Using the C Server Back-end

Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> ic:gen(random,[{be, c_server}]).
Erlang IDL compiler version 3.2
ok
2>

When the file “random.idl” is compiled it produces five files, two for the top scope, two for the interface
scope, and one for the module scope. The header files for top scope and interface are empty and not
shown here. In this case only the file for the interface rmod random.erl is important :.

� C file for interface : “rmod random s.c”

#include <string.h>
#include "ic.h"
#include "erl_interface.h"
#include "ei.h"
#include "rmod_random__s.h"

/*
* Main switch
*/

int rmod_random__switch(rmod_random oe_obj, CORBA_Environment *oe_env) {

int status=0;

/* Initiating exception indicator */
oe_env->_major = CORBA_NO_EXCEPTION;

/* Call switch */
if ((status = rmod_random__call_info(oe_obj, oe_env)) >= 0) {

if (strcmp(oe_env->_operation, "produce") == 0)
return rmod_random_produce__exec(oe_obj, oe_env);

if (strcmp(oe_env->_operation, "init") == 0)
return rmod_random_init__exec(oe_obj, oe_env);

/* Bad call */
CORBA_exc_set(oe_env, CORBA_SYSTEM_EXCEPTION, BAD_OPERATION,

"Invalid operation");
return -1;

}

/* Exit */
return status;

}

33IC Application

Chapter 1: IC User’s Guide

/*
* Returns call identity
*/

int rmod_random__call_info(rmod_random oe_obj,
CORBA_Environment *oe_env) {

char gencall_atom[10];
int error_code = 0;
int rec_version = 0;
oe_env->_iin = 0;
oe_env->_received = 0;

ei_decode_version(oe_env->_inbuf, &oe_env->_iin, &rec_version);
ei_decode_tuple_header(oe_env->_inbuf, &oe_env->_iin,

&oe_env->_received);
ei_decode_atom(oe_env->_inbuf, &oe_env->_iin, gencall_atom);

if (strcmp(gencall_atom, "$gen_cast") == 0) {

if ((error_code = ei_decode_atom(oe_env->_inbuf, &oe_env->_iin,
oe_env->_operation)) < 0) {

ei_decode_tuple_header(oe_env->_inbuf, &oe_env->_iin,
&oe_env->_received);

if ((error_code = ei_decode_atom(oe_env->_inbuf, &oe_env->_iin,
oe_env->_operation)) < 0) {

CORBA_exc_set(oe_env, CORBA_SYSTEM_EXCEPTION, BAD_OPERATION,
"Bad Message, cannot extract operation");

return error_code;
}
oe_env->_received -= 1;

} else
oe_env->_received -= 2;

return 0;
}

if (strcmp(gencall_atom, "$gen_call") == 0) {

ei_decode_tuple_header(oe_env->_inbuf, &oe_env->_iin,
&oe_env->_received);

if ((error_code = ei_decode_pid(oe_env->_inbuf, &oe_env->_iin,
&oe_env->_caller)) < 0) {

CORBA_exc_set(oe_env, CORBA_SYSTEM_EXCEPTION, MARSHAL,
"Bad Message, bad caller identity");

return error_code;
}

if ((error_code = ei_decode_ref(oe_env->_inbuf, &oe_env->_iin,
&oe_env->_unique)) < 0) {

CORBA_exc_set(oe_env, CORBA_SYSTEM_EXCEPTION, MARSHAL,
"Bad Message, bad message reference");

34 IC Application

1.6: Using the C Server Back-end

return error_code;
}

if ((error_code = ei_decode_atom(oe_env->_inbuf, &oe_env->_iin,
oe_env->_operation)) < 0) {

ei_decode_tuple_header(oe_env->_inbuf, &oe_env->_iin,
&oe_env->_received);

if ((error_code = ei_decode_atom(oe_env->_inbuf, &oe_env->_iin,
oe_env->_operation)) < 0) {

CORBA_exc_set(oe_env, CORBA_SYSTEM_EXCEPTION, BAD_OPERATION,
"Bad Message, cannot extract operation");

return error_code;
}

oe_env->_received -= 1;
return 0;

}
else {
oe_env->_received -= 2;
return 0;

}
}

CORBA_exc_set(oe_env, CORBA_SYSTEM_EXCEPTION, MARSHAL,
"Bad message, neither cast nor call");

return -1;
}

int rmod_random_produce__exec(rmod_random oe_obj,
CORBA_Environment *oe_env) {

if (oe_env->_received != 0) {
CORBA_exc_set(oe_env, CORBA_SYSTEM_EXCEPTION, BAD_PARAM,

"Wrong number of operation parameters");
return -1;

}
else {
rmod_random_produce__rs* oe_restore = NULL;
CORBA_double oe_result = 0;

/* Callback function call */
oe_restore = rmod_random_produce__cb(oe_obj, &oe_result, oe_env);

/* Encoding reply message */
rmod_random_produce__enc(oe_obj, oe_result, oe_env);

/* Restore function call */
if (oe_restore != NULL)
(*oe_restore)(oe_obj, &oe_result, oe_env);

35IC Application

Chapter 1: IC User’s Guide

}
return 0;

}

int rmod_random_produce__enc(rmod_random oe_obj,
CORBA_double oe_result,
CORBA_Environment *oe_env) {

int oe_error_code;
oe_env->_iout = 0;

oe_ei_encode_version(oe_env);
oe_ei_encode_tuple_header(oe_env, 2);
oe_ei_encode_ref(oe_env, &oe_env->_unique);

/* Encode parameter: CORBA_double oe_result */
if ((oe_error_code = oe_ei_encode_double(oe_env, oe_result)) < 0) {
CORBA_exc_set(oe_env, CORBA_SYSTEM_EXCEPTION, BAD_PARAM,

"Bad operation parameter on encode");
return oe_error_code;

}

return 0;
}

int rmod_random_init__exec(rmod_random oe_obj,
CORBA_Environment *oe_env) {

if (oe_env->_received != 3) {
CORBA_exc_set(oe_env, CORBA_SYSTEM_EXCEPTION, BAD_PARAM,

"Wrong number of operation parameters");
return -1;

}
else {
int oe_error_code = 0;
rmod_random_init__rs* oe_restore = NULL;
CORBA_long seed1;
CORBA_long seed2;
CORBA_long seed3;

/* Decode parameters */
if((oe_error_code = rmod_random_init__dec(oe_obj, &seed1, &seed2,

&seed3, oe_env)) < 0) {
CORBA_exc_set(oe_env, CORBA_SYSTEM_EXCEPTION, BAD_PARAM,

"Bad parameter on decode");
return oe_error_code;

}

/* Callback function call */
oe_restore = rmod_random_init__cb(oe_obj, &seed1, &seed2, &seed3,

36 IC Application

1.6: Using the C Server Back-end

oe_env);

/* Restore function call */
if (oe_restore != NULL)
(*oe_restore)(oe_obj, &seed1, &seed2, &seed3, oe_env);

}
return 0;

}

int rmod_random_init__dec(rmod_random oe_obj, CORBA_long* seed1,
CORBA_long* seed2, CORBA_long* seed3,
CORBA_Environment *oe_env) {

int oe_error_code;

if ((oe_error_code = ei_decode_long(oe_env->_inbuf,
&oe_env->_iin, seed1)) < 0)

return oe_error_code;

if ((oe_error_code = ei_decode_long(oe_env->_inbuf,
&oe_env->_iin, seed2)) < 0)

return oe_error_code;

if ((oe_error_code = ei_decode_long(oe_env->_inbuf,
&oe_env->_iin, seed3)) < 0)

return oe_error_code;

return 0;
}

The implementation file must be a C file, in this example we use a file called callbacks.c. This file
must be implemented in a similar way :

#include <stdlib.h>
#include "rmod_random__s.h"

rmod_random_produce__rs* rmod_random_produce__cb(rmod_random
oe_obj, double *rs,
CORBA_Environment *oe_env)

{
*rs = (double) rand();

return (rmod_random_produce__rs*) NULL;
}

rmod_random_init__rs* rmod_random_init__cb(rmod_random oe_obj,
long* seed1, long* seed2,

37IC Application

Chapter 1: IC User’s Guide

long* seed3,
CORBA_Environment *oe_env)

{
srand(*seed1 * *seed2 * *seed3);

return (rmod_random_init__rs*) NULL;
}

Compiling the Code :

� Please read the ReadMe file at the ic-3.2/examples/c-server directory.
In the same directory all the code for this example can also be found.

Note:
Due to changes inErl Interface, to allow buffer expansion, a new receiving function
ei receive encoded/5 is created, while changes have been implemnted in CORBA Environment
initialization. You must consider and adapt these. The example in the ic-3.2/examples/c-server
directory demonstrates the changes.

Running the example :

� Please read the ReadMe file att the ic-3.2/examples/c-server directory
In the same directory all the code for this example can also be found.

1.7 Programming Your Own Composit Function in C

1.7.1 CORBA Environment Setting

Here is the complete definition of the CORBA Environment structure, defined in file “ic.h” :

/* Environment definition */
typedef struct {

/*----- CORBA compatibility part ------------------------*/
/* Exception tag, initially set to CORBA_NO_EXCEPTION ---*/
CORBA_exception_type _major;

/*----- External Implementation part - initiated by the user ---*/
/* File descriptor */
int _fd;
/* Size of input buffer */
int _inbufsz;
/* Pointer to always dynamically allocated buffer for input */
char *_inbuf;
/* Size of output buffer */
int _outbufsz;
/* Pointer to always dynamically allocated buffer for output */
char *_outbuf;
/* Size of memory chunks in bytes, used for increasing the outpuy

38 IC Application

1.7: Programming Your Own Composit Function in C

buffer, set to >= 32, should be around >= 1024 for performance
reasons */

int _memchunk;
/* Pointer for registered name */
char _regname[256];

/* Process identity for caller */
erlang_pid *_to_pid;
/* Process identity for callee */
erlang_pid *_from_pid;

/*- Internal Implementation part - used by the server/client ---*/
/* Index for input buffer */
int _iin;
/* Index for output buffer */
int _iout;
/* Pointer for operation name */
char _operation[256];
/* Used to count parameters */

int _received;
/* Used to identify the caller */
erlang_pid _caller;

/* Used to identify the call */
erlang_ref _unique;
/* Exception id field */
CORBA_char *_exc_id;
/* Exception value field */
void *_exc_value;

} CORBA_Environment;

The structure is semantically divided into three areas :

� The CORBA Compatibility area, the area demanded by the standard OMG IDL mapping v2.0

� The External Implementation area, the implementation part used for standard implementation of
the generated client/server model.

� The Internal Implementation area, the implementation part usefull for those who wish to define
their own composit/switch functions.

Observe that the advanced user wishing to write own composit functions must have good knowledge of
Erl interface or/and EI-* functions.

1.7.2 The CORBA Compatibility Area of CORBA Environment

Contains only one (1) field, the major which is defined as a CORBA Exception type. The
CORBA Exception type is forced to be an integer type due to implementation details and in the
current version can be one of :

� CORBA NO EXCEPTION, by default equal to 0, can be set by the application programmer to
another value.

� CORBA SYSTEM EXCEPTION, by default equal to -1, can be set by the application
programmer to another value.

39IC Application

Chapter 1: IC User’s Guide

The current definition of these values look like :

#ifndef CORBA_NO_EXCEPTION
#define CORBA_NO_EXCEPTION 0
#endif

#ifndef CORBA_SYSTEM_EXCEPTION
#define CORBA_SYSTEM_EXCEPTION -1
#endif

1.7.3 The External Implementation Area of CORBA Environment

This area contains nine (9) fields :

� int fd - a file descriptor returned from erl connect. Used for connection setting.

� char* inbuf - pointer to a buffer used for input. Buffer size checks are done under runtime that
prevent buffer overflows. This is done by expanding the buffer to fit the input message. In order
to allow buffer reallocation, the output buffer must always be dynamically allocated. The pointer
value can change under runtime in case of buffer reallocation.

� int inbufsz - start size of input buffer. Used for setting the input buffer size under initialization of
the Erl Interface function ei receive encoded/5. The value of this field can change under runtime
in case of input buffer expansion to fit larger messages

� int outbufsz - start size of output buffer. The value of this field can change under runtime in case
of input buffer expansion to fit larger messages

� char* outbuf - pointer to a buffer used for output. Buffer size checks prevent buffer overflows
under runtime, by expanding the buffer to fit the output message in cases of lack of space in
buffer. In order to allow buffer reallocation, the output buffer must always be dynamically
allocated. The pointer value can change under runtime in case of buffer reallocation.

� int memchunk - expansion unit size for the output buffer. This is the size of memory chunks in
bytes used for increasing the output in case of buffer expansion. The value of this field must be
allways set to >= 32, should be at least 1024 for performance reasons.

� char regname[256] - a registered name for a process.

� erlang pid* to pid - an Erlang process identifier, is only used if the registered name parameter is
the empty string.

� erlang pid* from pid - your own process id so the answer can be returned

1.7.4 The Internal Implementation Area of CORBA Environment

This area contains eight (8) fields :

� int iin - Index for input buffer. Initially set to zero. Updated to agree with the length of the
received encoded message.

� int iout - Index for output buffer Initially set to zero. Updated to agree with the length of the
message encoded to the communication counterpart.

� char operation[256] - Pointer for operation name. Set to the operation to be called.

� int received - Used to count parameters. Initially set to zero.

� erlang pid caller - Used to identify the caller. Initiated to a value that identifies the caller.

40 IC Application

1.7: Programming Your Own Composit Function in C

� erlang ref unique - Used to identify the call. Set to a default value in the case of generated
composit functions.

� CORBA char* exc id - Exception id field. Initially set to NULL to agree with the initial value of
major (CORBA NO EXCEPTION).

� void* exc value - Exception value field Initially set to NULL to agree with the initial value of
major (CORBA NO EXCEPTION).

The advanced user who defines his own composit/switch functions has to update/support these values a
way similar to the use of these in the generated code.

1.7.5 Creating and Initiating the CORBA Environment Structure

There are two ways to set the CORBA Environment structure :

� Manually
The following default values must be set to the CORBA Environment *ev fields, when buffers for
input / output should have the size inbufsz / outbufsz:

– ev-> inbufsz = inbufsz;
The value for this field can be between 0 and maximum size of a signed integer.

– ev-> inbuf = malloc(inbufsz);
The size of the allocated buffer must be equal to the value of its corresponding index,
inbufsz.

– ev-> outbufsz = outbufsz;
The value for this field can be between 0 and maximum size of a signed integer.

– ev-> outbuf = malloc(outbufsz);
The size of the allocated buffer must be equal to the value of its corresponding index,
outbufsz.

– ev-> memchunk = OE MEMCHUNK ;
Please note that OE MEMCHUNK is equal to 1024, you can set this value to a value
bigger than 32 yourself.

– ev-> to pid = NULL;

– ev-> from pid = NULL;

� By using CORBA Environment alloc/2 function.
The CORBA Environment alloc function is defined as :

CORBA_Environment *CORBA_Environment_alloc(int inbufsz,
int outbufsz);

where :

– inbufsz is the desired size of input buffer

– outbufsz is the desired size of output buffer

– return value is a pointer to an allocated and initialized CORBA Environment structure

This function will set all needed default values and allocate buffers equal to the values passed, but
will not allocate space for the to pid and from pid fields.
To free the space allocated by CORBA Environment alloc/2 :

– First call CORBA free for the input and output buffers.

– After freeing the buffer space, call CORBA free for the CORBA Environment space.

41IC Application

Chapter 1: IC User’s Guide

Note:
Remember to set the fields fd, regname, * to pid and/or * from pid to the appropriate application
values. These are not automatically set by the stubs.

Warning:
Never assign static buffers to the buffer pointers. Never set the memchunk field to a value less than
32.

1.7.6 Setting System Exceptions

If the advanced user wishes to set own system exceptions at critical positions on the code, it is strongly
recommended to use one of the current values :

� CORBA NO EXCEPTION upon success. The value of the exc id field should be then set to
NULL. The value of the exc value field should be then set to NULL.

� CORBA SYSTEM EXCEPTION upon system failure. The value of the exc id field should be
then set to one of the values defined in “ic.h” :

#define UNKNOWN "UNKNOWN"
#define BAD_PARAM "BAD_PARAM"
#define NO_MEMORY "NO_MEMORY"
#define IMPL_LIMIT "IMP_LIMIT"
#define COMM_FAILURE "COMM_FAILURE"
#define INV_OBJREF "INV_OBJREF"
#define NO_PERMISSION "NO_PERMISSION"
#define INTERNAL "INTERNAL"
#define MARSHAL "MARSHAL"
#define INITIALIZE "INITIALIZE"
#define NO_IMPLEMENT "NO_IMPLEMENT"
#define BAD_TYPECODE "BAD_TYPECODE"
#define BAD_OPERATION "BAD_OPERATION"
#define NO_RESOURCES "NO_RESOURCES"
#define NO_RESPONSE "NO_RESPONSE"
#define PERSIST_STORE "PERSIST_STORE"
#define BAD_INV_ORDER "BAD_INV_ORDER"
#define TRANSIENT "TRANSIENT"
#define FREE_MEM "FREE_MEM"
#define INV_IDENT "INV_IDENT"
#define INV_FLAG "INV_FLAG"
#define INTF_REPOS "INTF_REPOS"
#define BAD_CONTEXT "BAD_CONTEXT"
#define OBJ_ADAPTER "OBJ_ADAPTER"
#define DATA_CONVERSION "DATA_CONVERSION"
#define OBJ_NOT_EXIST "OBJECT_NOT_EXIST"

42 IC Application

1.8: IDL to Java language Mapping

The value of the exc value field should be then set to a string that explains the problem in an
informative way. The user should use the functions CORBA exc set/4 and CORBA exception free/1 to
free the exception. The user has to use CORBA exception id/1 and CORBA exception value/1 to
access exception information. Prototypes for these functions are declared in “ic.h”

1.7.7 Guidlines for the Advanced User:

Here are some guidelines for the composit function programmer:

� Try to define buffers for input/output that are big enough to host the corresponding data. If the
buffers are not big enough, the stub will reallocate the buffers which cost under runtime.

� Set the exceptions by using the function CORBA exc set/4

� Set exceptions only when really needed. Do not overuse system exceptions.

� Always free the CORBA Environment exception fields by use of CORBA exception free/1 after a
system failure.

� Look at the examples in the examples/c-client and examples/c-server directories. The code is tested
and follows the suggested application paradigm.

1.8 IDL to Java language Mapping

1.8.1 Introduction

This chapter describes the mapping of OMG IDL constructs to the Java programming language for the
generation of native Java - Erlang communication.

This language mapping defines the following:

� All OMG IDL basic types

� All OMG IDL constructed types

� References to constants defined in OMG IDL

� Invocations of operations, including passing of parameters and receiving of result

� Access to attributes

1.8.2 Specialities in the Mapping

Names Reserved by the Compiler

The IDL compiler reserves all identifiers starting with OE and oe for internal use.

1.8.3 Basic OMG IDL Types

The mapping of basic types are according to the standard. All basic types have a special Holder class.

OMG IDL type Java type

float float

double double

continued ...

43IC Application

Chapter 1: IC User’s Guide

... continued

short short

unsigned short short

long int

long long long

unsigned long long

unsigned long long long

char char

wchar char

boolean boolean

octet octet

string java.lang.String

wstring java.lang.String

any Any

long double Not supported

Object Not supported

void void

Table 1.5: OMG IDL basic types

1.8.4 Constructed OMG IDL Types

All constructed types are according to the standard with three (3) major exceptions.

� The IDL Exceptions are not implemented in this Java mapping.

� The functions used for read/write to streams, defined in Helper functions are named unmarshal
(instead for read) and marshal (instead for write).

� The streams used in Helper functions are OtpInputStream for input and OtpOutputStream for
output.

1.8.5 Mapping for Constants

Constants are mapped according to the standard.

1.8.6 Invocations of Operations

Operation invocation is implemented according to the standard. The implementation is in the class
<nterfacename>Stub.javawhich implements the interface in <nterfacename>.java.

test._iStub client;

client.op(10);

44 IC Application

1.8: IDL to Java language Mapping

Operation Implementation

The server is implemented through extension of the class <nterfacename>ImplBase.java and
implementation of all the methods in the interface.

public class server extends test._iImplBase {

public void op(int i) throws java.lang.Exception {
System.out.println("Received call op()");
o.value = i;
return i;

}

}

1.8.7 Exceptions

While exception mapping is not implemented, the stubs will generate some Java exceptions in case of
operation failure. No exceptions are propagated through the communication.

1.8.8 Access to Attributes

Attributes are supported according to the standard.

1.8.9 Summary of Argument/Result Passing for Java

All types (in, out or inout) of user defined parameters are supported in the Java mapping. This is also
the case in the Erlang mappings but not in the C mapping. inout parameters are not supported in the C
mapping so if you are going to do calls to or from a C program inout cannot be used in the IDL
specifications.

out and inout parameters must be of Holder types. There is a jar file (ic.jar) with Holder classes for
the basic types in the ic application. This library is in the directory $OTPROOT/lib/ic <version
number>/priv.

1.8.10 Communication Toolbox

The generated client and server stubs use the classes defined in the jinterface package to
communicate whith other nodes. The most important classes are :

� OtpInputStream which is the stream class used for incoming message storage

� OtpOutputStream which is the stream class used for outgoing message storage

� OtpErlangPid which is the process identification class used to identify processes inside a java
node.
The recommended constructor function for the OtpErlangPid is OtpErlangPid(String node,
int id, int serial, int creation) where :

– String node, is the name of the node where this process runs.

– int id, is the identification number for this identity.

– int serial, internal information, must be an 18-bit integer.

45IC Application

Chapter 1: IC User’s Guide

– int creation, internal information, must have value in range 0..3.

� OtpConnection which is used to define a connection between nodes.
While the connection object is stub side constructed in client stubs, it is returned after calling the
accept function from an OtpErlangServer object in server stubs. The following methods used for
node connection :

– OtpInputStream receiveBuf(), which returns the incoming streams that contain the
message arrived.

– void sendBuf(OtpErlangPid client, OtpOutputStream reply), which sends a reply
message (in an OtpOutputStream form) to the client node.

– void close(), which closes a connection.

� OtpServer which is used to define a server node.
The recommended constructor function for the OtpServer is :

– OtpServer(String node, String cookie). where :

� node is the requested name for the new java node, represented as a String object.
� cookie is the requested cookie name for the new java node, represented as a String

object.

The following methods used for node registration and connection acceptance :

– boolean publishPort(), which registers the server node to epmd daemon.

– OtpConnection accept(), which waits for a connection and returns the OtpConnection
object which is unique for each client node.

1.8.11 The Package com.ericsson.otp.ic

The package com.ericsson.otp.ic contains a number of java classes specially designed for the IC
generated java-back-ends :

� Standard java classes defined through OMG-IDL java mapping :

– BooleanHolder

– ByteHolder

– CharHolder

– ShortHolder

– IntHolder

– LongHolder

– FloatHolder

– DoubleHolder

– StringHolder

– Any, AnyHelper, AnyHolder

– TypeCode

– TCKind

� Implementation-dependant classes :

– Environment

– Holder

46 IC Application

1.8: IDL to Java language Mapping

� Erlang compatibility classes :

– Pid, PidHelper, PidHolder
The Pid class originates from OtpErlangPid and is used to represend the Erlang built-in pid
type, a process’s identity. PidHelper and PidHolder are helper respectively holder classes for
Pid.

– Ref, RefHelper, RefHolder
The Ref class originates from OtpErlangRef and is used to represend the Erlang built-in ref
type, an Erlang reference. RefHelper and RefHolder are helper respectively holder classes for
Ref.

– Port, PortHelper, PortHolder
The Port class originates from OtpErlangPort and is used to represend the Erlang built-in
port type, an Erlang port. PortHelper and PortHolder are helper respectively holder classes
for Port.

– Term, TermHelper, TermHolder
The Term class originates from Any and is used to represend the Erlang built-in term type, an
Erlang term. TermHelper and TermHolder are helper respectively holder classes for Term.

To use the Erlang build-in classes, you will have to include the file erlang.idl located under
$OTPROOT/lib/ic/include.

1.8.12 The Term Class

The Term class is intended to represent the Erlang term generic type. It extends the Any class and it is
basically used in the same way as in the Any type.

The big difference between Term and Any is the use of guard methods instead of TypeCode to
determine the data included in the Term. This is especially true when the Term’s value class cannot be
determinated at compilation time. The guard methods found in Term :

� boolean isAtom() returns true if the Term is an OtpErlangAtom, false otherwise

� boolean isConstant() returns true if the Term is neither an OtpErlangList nor an
OtpErlangTuple, false otherwise

� boolean isFloat() returns true if the Term is an OtpErlangFloat, false otherwise

� boolean isInteger() returns true if the Term is an OtpErlangInt, false otherwise

� boolean isList() returns true if the Term is an OtpErlangList, false otherwise

� boolean isString() returns true if the Term is an OtpErlangString, false otherwise

� boolean isNumber() returns true if the Term is an OtpErlangInteger or an OtpErlangFloat,
false otherwise

� boolean isPid() returns true if the Term is an OtpErlangPid or Pid, false otherwise

� boolean isPort() returns true if the Term is an OtpErlangPort or Port, false otherwise

� boolean isReference() returns true if the Term is an OtpErlangRef, false otherwise

� boolean isTuple() returns true if the Term is an OtpErlangTuple, false otherwise

� boolean isBinary() returns true if the Term is an OtpErlangBinary, false otherwise

47IC Application

Chapter 1: IC User’s Guide

1.8.13 Stub File Types

For each interface, three (3) stub/skeleton files are generated :

� A java interface file, named after the idl interface.

� A client stub file, named after the convention < interface name >Stub which implements the
java interface. Example : stackStub.java

� A server stub file, named after the convention < interface name >ImplBase which
implements the java interface. Example : stackImplBase.java

1.8.14 Client Stub Initialization, Methods Exported

The recommended constructor function for client stubs accepts four (4) parameters :

� String selfNode, the node identification name to be used in the new client node.

� String peerNode, the node identification name where the client process is running.

� String cookie, the cookie to be used.

� Object server, where the java Object can be one of:

– OtpErlangPid, the server’s process identity under the node where the server process is
running.

– String, the server’s registered name under the node where the server process is running.

The methods exported from the generated client stub are :

� void disconnect(), which disconnects the server connection.

� void reconnect(), which disconnects the server connection if open, and then connects to the
same peer.

� void stop(), which sends the standard stop termination call. When connected to an Erlang
server, the server will be terminated. When connected to a java server, this will set a stop flag that
denotes that the server must be terminated.

� com.ericsson.otp.erlang.OtpErlangRef getRef(), will return the message reference
received from a server that denotes which call it is refering to. This is usefull when building
asynchroinous clients.

� java.lang.Object server(), which returns the server for the current connection.

1.8.15 Server Skeleton Initialization, Server Stub Implementation, Methods
Exported

The constructor function for server skeleton accepts no parameters.

The server skeleton file contains a server switch which decodes messages from the input stream and
calls implementation (callback) functions. As the server skeleton is declared abstract, the
application programmer will have to create a stub class that extends the skeleton file. In this class, all
operations defined in the interface class, generated under compiling the idl file, are implemented.

The server skeleton file exports the following methods:

� OtpOutputStrem invoke(OtpInputStream request), where the input stream request is
unmarshalled, the implementation function is called and a reply stream is marshalled.

48 IC Application

1.8: IDL to Java language Mapping

� boolean isStopped(), which returns true if a stop message is received. The implementation of
the stub should always check if such a message is received and terminate if so.

� boolean isStopped(com.ericsson.otp.ic.Environment), which returns true if a stop
message is received for a certain Environment and Connection. The implementation of the stub
should always check if such a message is received and terminate if so.

� OtpErlangPid getCallerPid(), which returns the caller identity for the latest call.

� OtpErlangPid getCallerPid(com.ericsson.otp.ic.Environment), which returns the caller
identity for the latest call on a certain Environment.

� java.util.Dictionary operations(), which returns the operation dictionary which holds all
operations supported by the server skeleton.

1.8.16 A Mapping Example

This is a small example of a simple stack. There are two operations on the stack, push and pop. The
example shows some of the generated files.

// The source IDL file: stack.idl

struct s {
long l;
string s;

};

interface stack {
void push(in s val);
s pop();

};

When this file is compiled it produces eight files. Three important files are shown below.

The public interface is in stack.java.

public interface stack {

/****
* Operation "stack::push" interface functions
*
*/

void push(s val) throws java.lang.Exception;

/****
* Operation "stack::pop" interface functions
*
*/

s pop() throws java.lang.Exception;

}

For the IDL struct s three files are generated, a public class in s.java.

49IC Application

Chapter 1: IC User’s Guide

final public class s {
// instance variables
public int l;
public java.lang.String s;

// constructors
public s() {};
public s(int _l, java.lang.String _s) {
l = _l;
s = _s;

};

};

A holder class in sHolder.java and a helper class in sHelper.java. The helper class is used for marshalling.

public class sHelper {

// constructors
private sHelper() {};

// methods
public static s unmarshal(OtpInputStream in)

throws java.lang.Exception {
:
:

};

public static void marshal(OtpOutputStream out, s value)
throws java.lang.Exception {
:
:

};

};

1.8.17 Running the Compiled Code

When using the generated java code you must have added $OTPROOT/lib/ic <version
number>/priv and $OTPROOT/lib/jinterface <version number>/priv to your CLASSPATH variable
to get basic Holder types and the communication classes.

1.9 IDL Compiler Release Notes

1.9.1 IC 4.1.2, Release Notes

Improvements and new features

� -

50 IC Application

1.9: IDL Compiler Release Notes

Fixed bugs and malfunctions

� Merging of map’s (map) using the merge function does not work.
Own Id: OTP-4323

� Error in generated C decode/encode functions for union’s with desciminator where the union has
no value for all descriminator values. E.g. a union with descriminator boolean where only the
descriminator value TRUE has a corresponding union value. Here is how such a thing would look
in IDL:

union OptXList switch(boolean) f
case TRUE: integer val;

g;

Own Id: OTP-4322

� Scoped op calls (’fscoped op calls, trueg’) does not handle module/function names beginning
with capital letter (e.g. Megaco should be ’Megaco’) for oneway operations (handle cast).
Own Id: OTP-4310

� A bug is fixed on C-IDL erlang binaries that caused pointer error when residing inside sequences.
Own Id: OTP-4303

Incompatibilities

-

Known bugs and problems

� -

1.9.2 IC 4.1.1, Release Notes

Improvements and new features

� A new option ’multiple be’ is added that allows multiple backend generation for the same IDL
file.

Fixed bugs and malfunctions

� A bug is fixed on IDL types that contain undrescore ’ ’.
Own Id: OTP-3710

� A bug is fixed on IDL structs that caused scope confusion when types and fields of a struct had
the same name.
Own Id: OTP-2893

Incompatibilities

-

51IC Application

Chapter 1: IC User’s Guide

Known bugs and problems

� -

1.9.3 IC 4.0.7, Release Notes

Improvements and new features

� The erlang binary special type is introduced, that allows efficient transfer of binaries between
erlang and C.
Own Id:OTP-4107

Fixed bugs and malfunctions

� -

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.4 IC 4.0.6, Release Notes

Improvements and new features

� -

Fixed bugs and malfunctions

� A bug is fixed on noc backend which caused generation of errornous code.
Own Id: OTP-3812

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.5 IC 4.0.5, Release Notes

Improvements and new features

� The pragma code option is extended to point specific functions on NOC backent, not only
interfaces.

52 IC Application

1.9: IDL Compiler Release Notes

Fixed bugs and malfunctions

� -

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.6 IC 4.0.4, Release Notes

Improvements and new features

� -

Fixed bugs and malfunctions

� A bug in pragma prefix when including IDL files is fixed. This caused problems for erlang-corba
IFR registrations.
Own Id: OTP-3620

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.7 IC 4.0.3, Release Notes

Improvements and new features

� Limited support on multiple file module definitions.
The current version supports multiple file module definitions all backends except the c oriented
backends.
Own Id: OTP-3550

Fixed bugs and malfunctions

� -

Incompatibilities

-

53IC Application

Chapter 1: IC User’s Guide

Known bugs and problems

� Multiple file definition of a module is not supported on c oriented backends.

� Type definitions on multiple file module level are limited to containers, such as modules and
interfaces. This is true on corba and Erlang backends.

1.9.8 IC 4.0.2, Release Notes

Improvements and new features

-

Fixed bugs and malfunctions

� A bug is fixed on Erlang backends.
The (recently) introduced generation of files describing sequence and array files were even true for
included interfaces. In the case of some Erlang backends this were unnecessary.
Own Id: OTP-3485

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.9 IC 4.0.1, Release Notes

Improvements and new features

� New functionality added on Java and Erl genserv backends.

– On the Java client stub :

� The Java client have now one more costructor function, that allows to continue with an
allready started connection.

� void stop() which sends a stop cast call to the server. While this causes the Erlang
server to terminate, it sets a stop flag to the Java server environment, requesting the
server to terminate.

� void reconnect() which closes the current client connection if open and then
connects to the same server.

The Environment variable is now declared as public.

– On the Java server skeleton :

� boolean isStopped() which returns true if a stop message where received, false
otherwise. The user must check if this function returns true, and in this case exit the
implemented server loop.

The Environment variable is now declared as protected which allows the implementation
that extends the stub to access it.

– On the Erlang gen server stub :

54 IC Application

1.9: IDL Compiler Release Notes

� stop(Server) which yields to a cast call to the standard gen server stop function. This
will always terminate the Erlang gen server, while it will set the stop flag for the Java
server stub.

Own Id: OTP-3433

Fixed bugs and malfunctions

-

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.10 IC 4.0, Release Notes

Improvements and new features

� New types handled by IC.
The following OMG-IDL types are added in this compiler version :

– long long
unsigned long long
wchar
wstring

Own Id: OTP-3331

� TypeCode as built in type and access code files for array and sequence types.

– As TypeCode is a psevdo-interface, it is now is a built-in type on IC.

– Access code files which contain information about TypeCode, ID and Name are now
generated for user defined arrays and sequences.

Own Id: OTP-3392

Fixed bugs and malfunctions

-

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

55IC Application

Chapter 1: IC User’s Guide

1.9.11 IC 3.8.2, Release Notes

Improvements and new features

-

Fixed bugs and malfunctions

A bug is fixed on preprocessor directive expansion.

When nested #ifdef - #ifndef directives, a bug caused improper included file expansion. This is fixed by
repairing the preprocessor expansion function.

Own Id: OTP-3472

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.12 IC 3.8.1, Release Notes

Improvements and new features

� Build in Erlang types support for java-backends
The built-in Erlang types term, port, ref and pid are needed in Java backends in order to
support an efficient mapping between the two languages. The new types are also supported by
additional helpers and holders to match with OMGs Java mapping As a result of this, the
following classes are added to the com.ericsson.otp.ic interface :

– Term,TermHelper,TermHolder which represents the built-in Erlang type term

– Ref,RefHelper,RefHolder which represents the built-in Erlang type ref

– Port,PortHelper, PortHolder which represents the built-in Erlang type port

– Pid, PidHelper and PidHolder which represents the built-in Erlang type pid

Own Id: OTP-3348

� Compile time preprocessor macro variable definitions
The preprocessor lacked possibility to accept user defined variables other than the one defined in
IDL files. This limited the use of command-ruled IDL specifications. Now the build-in
preprocessor allows the user to set variables by using the “preproc flags” option the same way as
using the “gcc” preprocessor.
Supported flags :

– "-D< Variable >" which defines a variable

– "-U< Variable >" which undefines a variable

Own Id: OTP-3349

56 IC Application

1.9: IDL Compiler Release Notes

Fixed bugs and malfunctions

A bug on comment type expansion is fixed.

The comment type expansion were errornous when inherited types (NOC backend). This is now fixed
and the type naming agree with the scope of the inheritor interface.

Own Id: OTP-3346

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.13 IC 3.8, Release Notes

Improvements and new features

� The code generated for java backend is optimized due to use of streams insead for tuple classes
when (un)marshalling message calls. Support for building clients using asynchronous client calls
and effective multithreaded servers.
Own Id: OTP-3310

� The any type is now supported for java backend.
Own Id: OTP-3311

A bug on C generated constants is fixed

While the constants are evaluated and behave well when used inside an IDL specification their
C-export were not working properly. The constant export definitions were not generated well :

� the declared C definition were errornous (the name did not always agree with the scope the
constant were declared in).

� there were no C- definition generated for the c-server backend when the constants were declared
inside an interface.

Own Id: OTP-3219

57IC Application

Chapter 1: IC User’s Guide

Incompatibilities

Due to optimizations in java backend, the stub initialization and usage differs than the previous version.

Client stub interface changes:

� Client disconnects by calling the disconnect() function instead for the old
closeConnection()

� All marshal operation functions have now the interface :
void < OpName > marshal(Environment<, Param |, Params >)

instead for
OtpErlangTuple < OpName > marshal(< Param, | Params, >OtpErlangPid,
OtpErlangRef)

� All unmarshal operation functions have now the interface :
< Ret value > < OpName > unmarshal(Environment<, Param |, Params >)

instead for
< Ret value > < OpName > unmarshal(< Param, | Params, >OtpErlangTuple,
OtpErlangRef)

� Call reference extraction is available by the client function :
OtpErlangRef getRef()

instead for previous function :
OtpErlangRef getReference(OtpErlangTuple)

Server skeleton interface changes:

� The implementation function no longer have to contain the two (2) contructor functions (with
super()). This is due to the fact that there is only one contructor function for each skeleton file :
public < interface name >ImplBase()

� The parameter for the caller identity extraction function getCallerPid is now an Environment
variable instead for an OtpErlangTuple.

� There is a new invoke function :
OtpOutputStream invoke(OtpInputStream)

instead for the old one :
OtpErlangTuple invoke(OtpErlangTuple)

� The OtpConnection class function used for receiving messages is now :
OtpInputStream receiveBuf()

instead for the old one :
OtpErlangTuple receive()

� The OtpConnection class function used for sending messages is now :
void sendBuf(OtpErlangPid, OtpOutputStream)

instead for the old one :
void send(OtpErlangPid, OtpErlangTuple)

Known bugs and problems

� The same as in previous version.

58 IC Application

1.9: IDL Compiler Release Notes

1.9.14 IC 3.7.1, Release Notes

Improvements and new features

Some memory usage optimizations for the compiler were done.

Fixed bugs and malfunctions

� A bug is fixed when C backend is used.
When C-union with enumerant discriminator, the size calculation of the discriminator value were
errornous. This lead to the sideeffect that only the first case of the union were alowed. The error
were fixed by fixing the size calculation of the discriminator.
Own Id: OTP-3215

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.15 IC 3.7, Release Notes

Improvements and new features

-

Fixed bugs and malfunctions

� A bug is fixed when C backend is used.
When unions with enumerant discriminator were decoded, an error encountered in the union size
calculation.
Own Id: OTP-3209

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.16 IC 3.6, Release Notes

Improvements and new features

-

59IC Application

Chapter 1: IC User’s Guide

Fixed bugs and malfunctions

� A bug is fixed when NOC backend is used.
When several functions with the same name were found in the included file tree, a compile time
failure occured.
Own Id: OTP-3203

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.17 IC 3.5, Release Notes

Improvements and new features

� Noc backend optimization
When NOC backend is choosed, the type code information on the stub functions is reduced to a
single atom “no tk”. This is the default behaviour. The typecode generation is enabled by the
“use tk” switch.
Own Id: OTP-3196

Fixed bugs and malfunctions

� General java backend bugfixes
Protocol errors on user defined structures and union types are corrected.

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.18 IC 3.4, Release Notes

Improvements and new features

� Semantic test enhancements.
The compiler detects now semantic errors when enumerant values colide with user defined types
on the same name scope.
Own Id: OTP-3157

60 IC Application

1.9: IDL Compiler Release Notes

Fixed bugs and malfunctions

� General java backend bugfixes
Several bugs were fixed on user defined types.

– Union discriminators work better when all possible case values are defined.

– A bug on Interface inherited operations is fixed that cause errors on generated server switch.

– Type definitions on included files are better generated.

Own Id: OTP-3156

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.19 IC 3.3, Release Notes

Improvements and new features

� A new back-end which generates Java code according to the CORBA IDL to Java mapping for
communication with the Erlang distribution protocol has been added to IC. For the moment there
is no support for the Erlang types Pid, Ref, Port and Term but this will be added later.
Own Id: OTP-2779

Fixed bugs and malfunctions

� Fixed the bug that the c code backends sometimes generated incorrect code for struct arguments.
They shall always be pointers.
Own Id: OTP-2732

� The code generation is fixed so the array parameters now follow the CORBA V2.0 C mapping.
Own Id: OTP-2873

� Fixed the problem that the checking of the numbers of outparameters always was true.
Own Id: OTP-2944

� Fixed the bug that some temporary variables was not declared when c code.
Own Id: OTP-2950

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

61IC Application

Chapter 1: IC User’s Guide

1.9.20 IC 3.2.2, Release Notes

Improvements and new features

� Unions are now supported to agree with OMG’s C mapping.
Own Id: OTP-2868

� There is now a possibility to use pre- and postcondition methods on the server side for IC
generated Corba Objects. The compiler option is documented in the ic reference manual and an
example of how the pre- and postcondition methods should be designed and used is added to ic
example directory (an ReadMe.txt file exists with some instructions for running the example
code).
Own Id: OTP-3068

Fixed bugs and malfunctions

� The compiler ignores unknown/non supported pragma directives. A warning is raised while the
generated code will then be the same as if the corresponding (unkown) pragma directive were
missing.
Own Id: OTP-3052

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

1.9.21 IC 3.2.1, Release Notes

Improvements and new features

-

Fixed bugs and malfunctions

� Wrong C code was generated for limited strings when they where included from another IDL
specification.
Own Id: OTP-3033

Incompatibilities

-

Known bugs and problems

� The same as in previous version.

62 IC Application

1.9: IDL Compiler Release Notes

1.9.22 IC 3.2, Release Notes

Improvements and new features

-

Fixed bugs and malfunctions

� The buffers for in/output used by C-stubs are now expandable. This fixes buffer overflow
problems when messages received/sended do not fit in buffers.
Own Id: OTP-3001

Incompatibilities

The CORBA Environment structure has now two new fields, the buffers for in/output must now be
dynamically allocated.

Known bugs and problems

� The same as in previous version.

1.9.23 IC 3.1.2, Release Notes

Improvements and new features

-

Fixed bugs and malfunctions

� The generated IFR registration function for constants has been fixed so the parameters are correct.
Own Id: OTP-2856

� Error in the C code generation of ONEWAY operations without parameters The bug was an
decoding error in the operation header. The generated code expected one parameter instead of
zero. This is now fixed.
Own Id: OTP-2909

� Type problems on floats and booleans fixed.
Erroneous code for runtime checks on float was removed and the internal format of the data
representing the boolean value is uppgraded.
Own Id: OTP-2925

� The generated code for arrays of typedefined strings were erroneous in the C-backends due to a
failure in the compiler internal type checking.
Own Id: OTP-2936

� The generated code for typedefined nested sequences were erroneous in the C-backends. Pointer
mismatches caused compilation failure.
Own Id: OTP-2937

63IC Application

Chapter 1: IC User’s Guide

Incompatibilities

The IDL specifications must be regenerated for C due to changes in the code generation.

One must regenerate IDL specifications for Erlang CORBA if there are constants in the specification
due to previous errors in the IFR registration functions (OTP-2856).

Known bugs and problems

� OMG IDL - C mapping is not consistent on sequnce naming.
There is som inconsistencies around sequence naming in the specification which must be
investigated further.

� Problems with nested sequences
Nested sequences on the form:

typedef sequence<sequence<long> > ex;

are not generated correctly.
Nested sequences can be used if the innermost sequence is separately typedefined.

typedef sequence<long> lseq;
typedef sequence<lseq> ex;

1.9.24 IC 3.1.1, Release Notes

Improvements and new features

� Improvements on error repport on unsupported types by
propagating warning when declaring unions in C -backends

Fixed bugs and malfunctions

� A bug is fixed when arrays that contained variable size data on C-backends
The compiler generated errornous code when IDL defined arrays that contained variable size data
such as strings, varible size structs or sequences.
Own Id: OTP-2900

� A bug is fixed when sequences that contained variable size data on C backends
The compiler generated errornous code when IDL defined arrays that contained variable size data
such as strings, variable size structs or other sequences.
Own Id: OTP-2901

� A bug concerning bounded strings on C-backends is fixed.
The compiler generated errornous code for IDL defined bounded strings. Syntax errors were
generated in special cases of typdedefined strings.
Own Id: OTP-2898

� A runtime error when sequences that contained integer types is fixed.
When C-clients/server that communicated with Erlang clients/servers, and the data send by
Erlang part were a list of small numbers, the Erlang runtime compacts the list to a string. This
caused a runtime error when sending sequences of integer types and all had value less than 256.
Own Id: OTP-2899

� An OMG IDL - C mapping problem on enumerant values is fixed.
The enumerant values names is now prefixed by the current scope, as defined in the specification.
Own Id: OTP-2902

64 IC Application

1.9: IDL Compiler Release Notes

� A problem when using constants in array declarations is fixed.
Array dimentions declared with contants generated erroneous code.
Own Id: OTP-2864

Incompatibilities

� Changes in C-generation on enumerant values.

Known bugs and problems

� OMG IDL - C mapping is not consistent on sequnce naming.
There is som inconsistencies around sequence naming in the specification which must be
investigated further.

1.9.25 IC 3.1, Release Notes

Improvements and new features

� No new features are added

Changes in compiler usage and code generation.

� No changes since last version.

Fixed bugs and malfunctions

� A bug is fixed on the generated structures.
The generated C code for the structures corresponds now to direct mapping of C-structs.
Own Id: OTP-2843

Incompatibilities

� Included structures inside a struct are no longer pointers.

Known bugs and problems

� Runtime error when list that contain longs, shorts
When C-clients/server that communicates with Erlang clients/servers, and the data send by Erlang
part is a list of small numbers, the Erlang runtime compacts the list to a string
This is only actual in case of numbers with value less than 256

� Compiler failure when arrays that contain dynamic data.
The compiler fails to compile IDL defined arrays that contain complex data.

65IC Application

Chapter 1: IC User’s Guide

1.9.26 IC 3.0, Release Notes

Improvements and new features

� Interface change for C-backends
Major interface change. The new interface is CORBA 2.0 compliant.
Own Id: OTP-2845

� The C-backends functionality is improved

– Due to interface change and some unneeded error checks,the C-generated code is fairly
optimized.

Changes in compiler usage and code generation.

� No changes since last version.

Fixed bugs and malfunctions

� Several serious bugs on decoding and memory allocation are fixed.

Incompatibilities

� Interface change on the C-backends
In order to be CORBA 2.0 compatible, the new version generates fully incompatible C code.

Known bugs and problems

� The same as in version 2.5.1

1.9.27 IC 2.5.1, Release Notes

Improvements and new features

� A new backend is added : C-server
This back-ends can be used to create servers, compatible to c-clients, and Erlang genserver clients.
The code produced is a collection of functions for encoding and decoding messages and a switch
that coordinates them. These parts can be used to create other servers as well. All functions are
exported to header files.
Own Id: OTP-2713

� The C-client functionality is improved

– The static buffer used for input/output is removed along with the memset function that
initiated it. The new client is at least 20-30 procent faster.

– The internal structure of the client is changed. The client fuctions are now a collection of
encoding and decoding message functions ruled by a specific call function. While the basic
client generated is a synchronous client, the exported functions support the implementation
of threaded asynchonous clients.

– The static buffer used for input/output is remove along with the memset function that
initiated it. The new client is at least 20-30 procent faster.

– The code generated is generally improved, warnings are (almost) eliminated, while no
unidentified variable errors occur.

66 IC Application

1.9: IDL Compiler Release Notes

– The IDL types unsigned shorts, shorts, floats are supported now.

– All generated functions are exported in client header files..

Own Id: OTP-2712

Changes in compiler usage and code generation.

� A new option is added for the C-server back-end : c server.

� A new option is added : scoped op calls.

Fixed bugs and malfunctions

� A bug oneway operations on erl corba and erl genserv that caused en exit due to internal interface
error is fixed.

� A bug on oneway operations on c genserv back-end that caused several variables to be
unidentifined is fixed.

Incompatibilities

� Interface change on the C-client
The client functions are called with two extra variables, a pointer to an array of char - used for
storage and an integer - the array size

� The IDL type attribute is disabled, due to some implementation problems.

Known bugs and problems

� The same as in version 2.1

1.9.28 IC 2.1, Release Notes

Improvements and new features

� The compiler now provides more in depth information (outprints) when errors occur.
In some cases the compiler stops compiling due to an abnormal exit or incompatible input. In this
situation, a “fatal error” may occur but the compiler will generate information explaining the
problem.
Own Id: OTP-2565

Changes in compiler usage and code generation.

� No changes since version 2.0

Fixed bugs and malfunctions

� No changes since version 2.0

Incompatibilities

� The same as in version 2.0

67IC Application

Chapter 1: IC User’s Guide

Known bugs and problems

� The same as in version 2.0

1.9.29 IC 2.0, Release Notes

Improvements and new features

� The IDL compiler is now a separate application and is longer a part of Orber.

� Pragma handling implementation.
Pragma ID, prefix and version are implemented to agree with CORBA revision 2.0. The compiler
accepts and applies these on the behavior of the compiled code.
In this implementation, pragmas are accepted by the parser and applied by the use of ic pragma
functions.
All IFR-identity handling now passes through pragma table. As pragma handling in OMG-IDL is
affecting the identity of an ifr-object, all identity handling and registration is now controlled by
pragma functions. A hash table called “pragmatab” contains vital identity information used under
compilation.
There two major pragma categories :

– Normal pragmas, are used in the code where basic definitions and statements appear.

– Under certain circumstances, ugly pragmas can now appear inside code, parameter lists,
structure definitions ... etc.
It is quite challenging to allow ugly pragmas, but the effects of unlimited ugly pragma
implementation on the parser can be enormous. Ugly pragmas can cause the parser source
code to become time consuming and user unreadable.
In order to allow ugly pragmas but not destroy the current structure of the parser, the use of
ugly pragmas is limited. Multiple pragma directives are allowed inside parameter lists,
unions, exceptions, enumerated type, structures... as long as they are do not appear between
two keywords or between keywords and identifiers.

The pragma effect is the same for both scope and basic pragma rules.
When compiling, an IFR-identity must be looked up several times but by storing identity aliases
inside the pragma table there this an increase in both speed and flexibility.
Own Id: OTP-2128

� Code for interface inheritance registration for the IFR registration code .
Inherited interfaces can now be registered as a list of interface descriptions by entering code for
inherited interface registration under new interface creation. This is achieved by correcting the
function reg2/6 and adding two more functions, get base interfaces/2 and call fun str/2
Own Id: OTP-2134

� IFR registration checks for included IDL files.
All top level definitions (with respect to the scope) - modules, interfaces, constants, types or
exceptions - found in an IDL file are either defined inside the compiled IDL file or inside included
files. By having an extended registration of all top level definitions it becomes possible to simply
produce checks for those included by the current IDL file. A function call include reg test/1 is
added in all OE * files that checks for IFR-registration on all included IDL files. The code for that
function is added inside the OE * file, while the function is called under OE *:OE register/0
operation.
Own Id: OTP-2138

� Exception registration under IFR-operation creation.
By entering code for exception registration under operation creation, the exceptions of an
operation can be checked now. This is done by correcting the function get exceptions/4 and

68 IC Application

1.9: IDL Compiler Release Notes

adding two more functions, excdef/5 and get EXC ID/5 (the last two are cooperating with the
first one and all three are defined in the module “ictk”).
Own Id: OTP-2102

� New back-end to IDL compiler : Plain Erlang.
The new back-end just translates IDL specifications to Erlang module calls. No pragmas are
allowed.
Own Id: OTP-2471

� New back-end to IDL compiler : generic server.
A new back-end that translates IDL specifications to a standard OTP generic server.
Own Id: OTP-2482

� New back-end to IDL compiler : c client generation
A new back-end that translates IDL specifications to a C API for accessing servers in Erlang.
Own Id: OTP-1511

� All records in generated files reveal own Erlang modules.
In Erlang related back-ends, every structure which generates definition form is a record, (such as
union, struct, exception....). These records are held in a generated Erlang files which contain
functions that reveal record information.
The Erlang file which contain these functions is named after the scope of the record (similar to
the generated module and interface files).
Three functions are available :

– tc/0 - returns the record type code,

– id/0 - returns the record id,

– name - returns the record name.

Own Id: OTP-2473

� Changes in compiler usage and code generation.

– New compilation flags. New flag be (= back-end) which is used by the compiler to choose
back-end. Default back-end is set to erl corba.

– Stub files have an extra function oe dependency/0 indicating file dependency. This helps the
user to determine which IDL files should to be compiled beside the compiled file.

Own Id: OTP-2474

� The IDL generation for CORBA is changed so standard gen server return values can be used from
the implementation module. The change is compatible so that old values remain valid.
Own Id: OTP-2485

� It’s now possible to generate an API to a CORBA object that accepts timeout values in the calls in
the same manner as gen server. The option to the compiler is “timeout”.
Own Id: OTP-2487

Fixed bugs and malfunctions

� Empty file generation problem is fixed. When the IDL module definition did not contain constant
definitions, the generated stub file for that module definition was empty. After checking the
module body, these files will not be generated anymore.

Incompatibilities

� Changes in generated files.

69IC Application

Chapter 1: IC User’s Guide

Stub-files generated by the compiler had prefix “OE ” and those used by Orber had also a
register/unregister function called “OE register”/“OE unregister” and a directive
“OE get interface” passed to the gen server. This made it difficult/irritating to use, for example
call to the register function in Orber would appear as shown below:

– ’OE filename’:’OE register’().

This is changed by using the prefix “oe ” instead for “OE ” for the above. A registration call in
Orber is now written:

– oe filename:oe register().

Own Id: OTP-2440

Known bugs and problems

� No checks are made to ensure reference integrity. IDL specifies that identifiers must have only
one meaning in each scope.

� Files are not closed properly when the compiler has detected errors. This may result in an
emfiles error code from the Erlang runtime system when the maximum number of open files has
been exceeded. The solution is to restart the Erlang emulator when the file error occurs.

� If inline enumerator discriminator types are used, then the name of the enumeration is on the
same scope as the name of the union type. This does not apply when the discriminator type is
written using a type reference.

� Parser failure with syntax error when “standard” preprocessor directives such as #ifndef and
#include (not pragmas) are used in other than top level scope.

1.9.30 Previous Release Notes

For release notes on previous versions see the release notes on Orber (version previous to 1.0.3).

70 IC Application

IC Reference Manual

Short Summaries

� C Library CORBA Environment alloc [page 72] – Allocation function for the
CORBA Environement struct

� Erlang Module ic [page 75] – The Erlang IDL compiler.

CORBA Environment alloc

The following functions are exported:

� CORBA Environment * CORBA Environment alloc(inbufsz, outbufsz)
Initialize communication

ic

The following functions are exported:

� ic:gen(FileName) -> Result
[page 75] Generate stub and server code according to OMG/CORBA 2.0.

� ic:gen(FileName, [Option]) -> Result
[page 75] Generate stub and server code according to OMG/CORBA 2.0.

71IC Application

CORBA Environment alloc IC Reference Manual

CORBA Environment alloc
C Module

The CORBA Environment alloc() function is the function used to allocate and initiate
the CORBA Environment structure.

Exports

CORBA Environment * CORBA Environment alloc(inbufsz, outbufsz)

Types:

� int inbufsz;
� int outbufsz;

This funtion is used to create and initiate the CORBA Environment structure. In
particular, it is used to dynamically allocate a CORBA Environment structure and set
the default values for the structure’s fields.

inbufsize is the wished size of input buffer.

outbufsize is the wished size of output buffer.

CORBA Environment is the CORBA 2.0 state structure used by the generated stub.

This function will set all needed default values and allocate buffers equal to the values
passed, but will not allocate space for the to pid and from pid fields.

To free the space allocated by CORBA Environment alloc/2 :

� First call CORBA free for the input and output buffers.

� After freeing the buffer space, call CORBA free for the CORBA Environment
space.

72 IC Application

IC Reference Manual CORBA Environment alloc

The CORBA Environment structure

Here is the complete definition of the CORBA Environment structure, defined in file
ic.h :

/* Environment definition */
typedef struct {

/*----- CORBA compatibility part ------------------------*/
/* Exception tag, initially set to CORBA_NO_EXCEPTION ---*/
CORBA_exception_type _major;

/*----- External Implementation part - initiated by the user ---*/
/* File descriptor */
int _fd;
/* Size of input buffer */
int _inbufsz;
/* Pointer to always dynamically allocated buffer for input */
char *_inbuf;
/* Size of output buffer */
int _outbufsz;
/* Pointer to always dynamically allocated buffer for output */
char *_outbuf;

/* Size of memory chunks in bytes, used for increasing the outpuy
buffer, set to >= 32, should be around >= 1024 for performance
reasons */

int _memchunk;
/* Pointer for registered name */
char _regname[256];

/* Process identity for caller */
erlang_pid *_to_pid;
/* Process identity for callee */
erlang_pid *_from_pid;

/*- Internal Implementation part - used by the server/client ---*/
/* Index for input buffer */
int _iin;
/* Index for output buffer */
int _iout;
/* Pointer for operation name */
char _operation[256];
/* Used to count parameters */

int _received;
/* Used to identify the caller */
erlang_pid _caller;

/* Used to identify the call */
erlang_ref _unique;
/* Exception id field */
CORBA_char *_exc_id;
/* Exception value field */
void *_exc_value;

73IC Application

CORBA Environment alloc IC Reference Manual

} CORBA_Environment;

Note:
Remember to set the field values fd , regname , * to pid and/or * from pid to the
appropriate application values. These are not automatically set by the stubs.

Warning:
Never assign static buffers to the buffer pointers, never set the memchunk field to a
value less than 32.

SEE ALSO

ic(3)

74 IC Application

IC Reference Manual ic

ic
Erlang Module

The ic module is an Erlang implementation of an OMG IDL compiler. Depending on
the choice of back-end the code will map to Erlang or C. The compiler generates client
stub code and server behaviors.

Two kinds of files are generated for each scope, Erlang/C files and Erlang/C header files.
Headers are used to store record definitions, while usual Erlang/C files contain the
object interface functions, the object server or access functions for records defined in
interfaces.

Exports

ic:gen(FileName) -> Result

ic:gen(FileName, [Option]) -> Result

Types:

� Result = ok | error | fok, [Warninggg | ferror, [Warning], [Error]g
�

� Option = [GeneralOption | CodeOption | WarningOption | SingleBackendOption
| MultipleBackendOption]

�

� GeneralOption =
� foutdir, String()) | fcfgfile, String()g | fuse preproc, bool()g |

� fpreproc cmd, String()g | fpreproc flags, String()g
�

� CodeOption =
� fgen hrl, bool()g | fserv last call, exception | exitg |
� ffimpl, String()g, String()g | ffthis, String()g, bool()g |
� ffhandle info, String()g, bool()g | ftimeout, String()g |

� fscoped op calls, bool()g | fscl, bool()g
� fprecond, fatom(), atom()gg | ffprecond, String()g fatom(), atom()gg |

� fpostcond, fatom(), atom()gg | ffpostcond, String()g fatom(), atom()gg
�

� WarningOption =
� f’Wall’, bool()g | fmaxerrs, int() | infinityg |

� fmaxwarns, int() | infinityg | fnowarn, bool()g |
� fwarn name shadow, bool()g | fpedantic, bool()g |
� fsilent, bool()g
�

75IC Application

ic IC Reference Manual

� SingleBackendOption = fbe, Backendg
�

� MultipleBackendOption = fmultiple be, [Backend]g
�

� Backend =
� erl corba | erl plain | erl genserv | c genserv | c client | c server | java
�

� DirNAme = string() | atom()
�

� FileName = string() | atom()

The tuple fOption, trueg can be replaced with Option for boolean values.

General options

outdir Places all output files in the directory given by the option. The directory will be
created if it does not already exist.
Example: ic:gen(x, [foutdir, "output/generated"g])

cfgfile Uses FileName as configuration file. Options will override compiler defaults but
can be overridden by command line options. Default value is ".ic config".
Example: ic:gen(x, [fcfgfile, "special.cfg"g])

use preproc Uses a preprocessor. Default value is true.

preproc cmd Command string to invoke the preprocessor. The actual command will be
built as preproc cmd++preproc flags++FileName

Example1: ic:gen(x, [fpreproc cmd, "erl"g])

Example2: ic:gen(x, [fpreproc cmd, "gcc -x c++ -E"g])

preproc flags Flags given to the preprocessor.
Example: ic:gen(x, [fpreproc flags, "-I../include"

Code options

gen hrl Generate header files. Default is true.

serv last call Makes the last gen server handle call either raise a CORBA
exception or just exit plainly. Default is the exception.

ffimpl, IntfNameg, ModNameg Assumes that the interface with name IntfName is
implemented by the module with name ModName and will generate calls to the
ModName module in the server behavior. Note that the IntfName must be a fully
scoped name as in "M1::I1".

this Adds the object reference as the first parameter to the object implementation
functions. This makes the implementation aware of its own object reference.
The option comes in three varieties: this which activates the parameter for all
interfaces in the source file, fthis, IntfNameg which activates the parameter for a
specified interface and ffthis, IntfNameg, falseg which deactivates the
parameter for a specified interface.
Example: ic:gen(x, [this]) activates the parameter for all interfaces.
Example: ic:gen(x, [fthis, "M1::I1"g]) activates the parameter for all
functions of M1::I1.

76 IC Application

IC Reference Manual ic

Example: ic:gen(x, [this, ffthis, "M1::I2"g, falseg]) activates the
parameter for all interfaces except M1::I2.

handle info Makes the object server call a function handle info in the object
implementation module on all unexpected messages. Useful if the object
implementation need to trap exits.
Example: ic:gen(x, [handle info]) will activates module implementation
handle info for all interfaces in the source file.
Example: ic:gen(x, [ffhandle info, "M1::I1"g, trueg will activates
module implementation handle info for the specified interface.
Example: ic:gen(x, [handle info, ffhandle info, "M1::I1"g, falseg
will generate the handle info call for all interfaces except M1::I1.

timeout Used to allow a server response time limit to be set by the user. This should be
a string that represents the scope for the interface which should have an extra
variable for wait time initialization.
Example: ic:gen(x, [ftime out,"M::I"g]) produces server stub which will
has an extra timeout parameter in the initialization function for that interface.

scoped op calls Used to produce more refined request calls to server. When this option
is set to true, the operation name which was mentioned in the call is scoped. This is
essential to avoid name coalition when communicating with c-servers. This option
is available for the c-client, c-server and the Erlang gen server back ends. All of
the parts generated by ic have to agree in the use of this option. Default is false.
Example: ic:gen(x, [fbe, c genservg,fscoped op calls,trueg]) produces
client stub which sends “scoped” requests to the a gen server or a c-server.

scl Used for compatibility with previous compiler versions up to 3.3. Due to better
semantic checks on enumerants, the compiler discovers name coalitions between
user defined types and enumerant values in the same name space. By enabling this
option the compiler turns off the extended semantic check on enumerant values.
Default is false.
Example: ic:gen(x, [fscl,trueg])

precond Adds a precondition call before the call to the operation implementation on
the server side.
The option comes in three varieties: fprecond, fM, Fgg which activates the call
for operations in all interfaces in the source file, ffprecond, IntfNameg, fM, Fgg
which activates the call for all operations in a specific interface and ffprecond,
OpNameg, fM, Fgg which activates the call for a specific operation.
The precondition function has the following signature m:f(Module, Function,
Args).
Example: ic:gen(x, [fprecond, fmod, fungg]) adds the call of m:f for all
operations in the idl file.
Example: ic:gen(x, [ffprecond, "M1::I"g, fmod, fungg]) adds the call of
m:f for all operations in the interface M1::I1.
Example: ic:gen(x, [ffprecond, "M1::I::Op"g, fmod, fungg]) adds the
call of m:f for the operation M1::I::Op.

postcond Adds a postcondition call after the call to the operation implementation on
the server side.
The option comes in three varieties: fpostcond, fM, Fgg which activates the call
for operations in all interfaces in the source file, ffpostcond, IntfNameg, fM,
Fgg which activates the call for all operations in a specific interface and
ffpostcond, OpNameg, fM, Fgg which activates the call for a specific operation.

77IC Application

ic IC Reference Manual

The postcondition function has the following signature m:f(Module, Function,
Args, Result).
Example: ic:gen(x, [fpostcond, fmod, fungg]) adds the call of m:f for all
operations in the idl file.
Example: ic:gen(x, [ffpostcond, "M1::I"g, fmod, fungg]) adds the call
of m:f for all operations in the interface M1::I1.
Example: ic:gen(x, [ffpostcond, "M1::I::Op"g, fmod, fungg]) adds the
call of m:f for the operation M1::I::Op.

Warning options

’Wall’ The option activates all reasonable warning messages in analogy with the gcc
-Wall option. Default value is true.

maxerrs The maximum numbers of errors that can be detected before the compiler
gives up. The option can either have an integer value or the atom infinity.
Default number is 10.

maxwarns The maximum numbers of warnings that can be detected before the
compiler gives up. The option can either have an integer value or the atom
infinity. Default value is infinity.

nowarn Suppresses all warnings. Default value is false.

warn name shadow Warning appears whenever names are shadowed due to
inheritance; for example, if a type name is redefined from a base interface. Note
that it is illegal to overload operation and attribute names as this causes an error to
be produced. Default value is true.

pedantic Activates all warning options. Default value is false.

silent Suppresses compiler printed output. Default value is false.

Singe and Multiple Back-End options

� Single back-end options are declared as a tuple fbe,atom()g, where the atom is
one of back-end specific option.
Example: ic:gen(x, [fbe, [c client]g])

� Multiple back-end options are declared as a tuple fmultiple be, list()g, where
list is one or more back-end specific options.
Example: ic:gen(x, [fmultiple be, [erl genserv,java]g])

Default back-end is the single erl corba backend as if it were used : ic:gen(x, [fbe,
erl corba]g])

Back-End specific options

Used both for single and multiple back-end generation the following atoms are
back-end specific options:

erl corba This option switches to the IDL generation for CORBA.

erl plain Will produce plain Erlang modules which contain functions that map to the
corresponding interface functions on the input file.

78 IC Application

IC Reference Manual ic

erl genserv This is an IDL to Erlang generic server generation option.

c genserv Will produce a C client to the generic Erlang server.

c client Will produce a C client to the generic Erlang server.
Please note that this option have the same action as the c genserv option. It is
supposed to gradually replace the c genserv option. For a limited period of time
both options will be supported.

c server Will produce a C server switch with functionality of a generic Erlang server.

java Will produce Java client stubs and server sceleton with functionality of a generic
Erlang server.

Preprocessor

The IDL compiler allows several preprocessors to be used, the Erlang IDL
preprocessor or other standard C preprocessors. Options can be used to provide extra
flags such as include directories to the preprocessor. The build in the Erlang IDL
preprocessor is used by default, but any standard C preprocessor such as gcc is
adequate.

The preprocessor command is formed by appending the prepoc cmd to the
preproc flags option and then appending the input IDL file name.

Configuration

The compiler can be configured in two ways:

1. Configuration file

2. Command line options

The configuration file is optional and overrides the compiler defaults and is in turn
overridden by the command line options. The configuration file shall contain options in
the form of Erlang terms. The configuration file is read using file:consult.

An example of a configuration file, note the “.” after each line.

{outdir, gen_dir}.
{{impl, "M1::M2::object"}, "obj"}.

Output files

The compiler will produce output in several files depending on scope declarations found
in the IDL file. At most three file types will be generated for each scope (including the
top scope), depending on the compiler back-end and the compiled interface. Generally,
the output per interface will be a header file (.hrl/ .h) and one or more Erlang/C files
(.erl/.c). Please look at the language mapping for each back-end for details.

There will be at least one set of files for an IDL file, for the file level scope. Modules and
interfaces also have their own set of generated files.

79IC Application

ic IC Reference Manual

80 IC Application

List of Tables

1.1 OMG IDL Basic Types . 4

1.2 Basic Argument and Result passing . 7

1.3 Client argument storage responsibility . 8

1.4 Argument passing cases . 8

1.5 OMG IDL basic types . 44

81IC Application

List of Tables

82 IC Application

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

CORBA Environment alloc
CORBA_Environment_alloc/2 (C

function), 72

CORBA_Environment_alloc/2 (C function)
CORBA Environment alloc , 72

ic
ic:gen/1, 75
ic:gen/2, 75

ic:gen/1
ic , 75

ic:gen/2
ic , 75

83IC Application

Index of Modules and Functions

84 IC Application

